Plastics based on low-density polyethylene (LDPE) blends generally have limited miscibility, and it is difficult to obtain a homogeneous blend. Although they show excellent properties, their thermal degradation rate is a concern. This work aims to realize a homogeneous blend with higher chitosan concentration, thus expected to increase its degradation properties. An extrusion technique successfully synthesized LDPE and chitosan blends. The mixtures were prepared by adding maleic anhydride (MA) and -butyl peroxybenzoate (TBPB) as a compatibilizer and initiator, respectively. The addition of MA and TBPB resulted in homogeneous blends and using chitosan concentration of 40 %wt resulted in better tensile strength and elongation at break. The water uptake increased along with chitosan concentration in the blends. The thermal behavior analysis of the blends conducted by simultaneous TG/DTA revealed that the increase of chitosan concentration tends to improve the blend's thermal degradation slightly. Moreover, chitosan addition resulted in approximately a hundred times larger biodegradability compared to plastics based on LDPE alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674304 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2020.e05280 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
Electrospinning, a technique for creating fabric materials from polymer solutions, is widely used in various fields, including biomedicine. The unique properties of electrospun fibrous membranes, such as large surface area, compositional versatility, and customizable porous structure, make them ideal for advanced biomedical applications like tissue engineering and wound healing. By considering the high biocompatibility and well-known regenerative potential of polylactic acid (PLA) and chitosan (CH), as well as the versatile antibacterial effect of silver nanoparticles (AgNPs), this study explores the antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes with a unique nanofibrous structure and varying concentrations of AgNPs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China. Electronic address:
Slurry ice preparation experiences considerable supercooling, which can be mitigated by nano-nucleating agents. A nano-nucleating agent (CH/PE-TP NPs) was prepared by ultrasonication-assistant self-assembly of chitosan (CH) and pectin (PE), encapsulated with tea polyphenols (TP). Ultrasonication for 10 min downsized self-assembled aggregates from 5.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
Papaya ( L.) is a climacteric fruit which lose quality and shelf life quickly due to physiological decay and microbial infection after harvest. The study was conducted to evaluate newly applied clybio formulation (0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran; Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran. Electronic address:
The rapid industrialization and human activities in catchments have posed notable global challenges in removing of heavy metal contaminants from wastewater. Here, Schiff-bases (SB) of cyanoguanidine (CG) and salicylaldehyde (SA) were covalently grafted on a magnetic nanocomposite of chitosan to form a hybrid magnetic nanostructure (FeO@CS-CGSB). The synthesized structure was characterized using various techniques such as Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), zeta potential, and Brunauer-Emmett-Teller surface area analysis (BET).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China.
Applying nano-delivery systems for phytohormones via foliar application has proven effective in reducing grain cadmium (Cd) levels in crops. However, the mechanisms underlying this reduction remain inadequately understood. This study integrated the determination of leaf photosynthetic parameters, Cd translocation analysis, and metabolomics to elucidate the effects of reduced glutathione (GSH) and melatonin (MT), delivered with or without chitosan-encapsulated mesoporous silica nanoparticles (MSN-CS), on grain Cd levels in rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!