Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: WHO Group 1 pulmonary arterial hypertension is a progressive and potentially fatal disease. Individuals living at higher altitude are exposed to lower barometric pressure and hypobaric hypoxemia. This may result in pulmonary vasoconstriction and contribute to disease progression. We sought to examine the relationship between living at moderately high altitude and pulmonary arterial hypertension characteristics.
Methods: Forty-two US centers participating in the Pulmonary Hypertension Association Registry enrolled patients who met the definition of WHO Group 1 pulmonary arterial hypertension. We utilized baseline data and patient questionnaire responses. Patients were divided into two groups: moderately high altitude residence (home ≥4000 ft) and low altitude residence (home <4000 ft) based on zip-code. Clinical characteristics, hemodynamic data, patient demographics, and patient reported quality of life metrics were compared.
Results: Controlling for potential confounders (age, sex at birth, body mass index, supplemental oxygen use, race, 100-day cigarette use, alcohol use, and pulmonary arterial hypertension medication use), subjects residing at moderately high altitude had a 6-min walk distance 32 m greater than those at low altitude, despite having a pulmonary vascular resistance that was 2.2 Wood units higher. Additionally, those residing at moderately high altitude had 3.7 times greater odds of using supplemental oxygen.
Conclusion: Patients with pulmonary arterial hypertension who live at moderately high altitude have a higher pulmonary vascular resistance and are more likely to need supplemental oxygen. Despite these findings, moderately high altitude Pulmonary Hypertension Association Registry patients have better functional tolerance as measured by 6-min walk distance. It is possible that a "high-altitude phenotype" of pulmonary arterial hypertension may exist. These findings warrant further study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675880 | PMC |
http://dx.doi.org/10.1177/2045894020964342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!