The surface of poly (p-phenylene benzobisoxazole) (PBO) fibers with self-healing and ultraviolet (UV)-resistance performance play the key role in prolonging their service lifespan. Although great advances have been made in the single aspect of above two properties, integration of self-healing and anti-UV performance into the surface of PBO fiber is still a challenge. In this study, the coagulation strategy mediated by metal-organic framework (MOF) is proposed to construct the multifunctional surface of PBO fibers. The spindle-like iron (III)-based MOF (MIL-88B-NH) nanocrystals are firstly immobilized onto the surface of PBO-COOH through hydrothermal reaction, then serving as the medium layer to further immobilize sufficient graphene oxide (GO) nanosheets. Benefitting from the favorable near-infrared (NIR, 808 nm) photothermal conversion performance of GO nanolayers, the monofilament composite-PBO@Fe-MIL-88B-NH-GO-TPU (thermoplastic polyurethane) exhibited a stable and high self-healing efficiency (approximately 80%) within five cycle times. Meanwhile, the cooperative adsorption and shielding weaken effects of MOF-GO nanolayers enabled PBO fibers with excellent anti-UV properties that are superior to much reported literatures after 96 h aging time and eventually increased by 75% compared with untreated PBO fiber. In view of the varieties and multifunctionalities of MOFs and carbon nanomaterials, MOF-mediated coagulation strategy would provide guidance for preparing multifunctional composite materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.11.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!