Cancer is the deadliest disease worldwide and the development of safer chemical entities to treat cancer is one of the major challenges of medicinal chemistry. The emergence of new cases every year and the development of multiple drug resistance against available molecular entities have turned the focus of researchers towards natural products. Chalcones are pharmacologically active compounds, present in plants, which have been derivatized and screened by many researchers for the treatment of cancer. Chalcones, consist of 1,3-diaryl-2- propen-1-one, is one such class exhibiting broad anticancer activities against various cancerous cell lines. The objective of this review article is to analyze the antitumor activity of the reported chalcones via distinct mechanisms adopted by these molecules underlying their inhibitory activity. The primary focus of this review is to bring the attention of researchers towards the latest and important chalcones and their derivatives having potent anticancer activity adding their possible action of mechanisms against cancerous cell lines The recent literature was surveyed and it was found that chalcone analogs with electron donating groups, indolyl, quinolone, pyrazol-ol, hydroxyaminobenzamide, hydroxamic acid and pyridyl- indole groups have shown promise as potential anticancer agents following various mechanisms. Most chalcones were found to induce significant cell cycle arrest at G2/M phase hence leading to apoptosis. A number of synthetic chalcones exhibited higher efficacy due to their ability of potent tubulin polymerization as well as dynamic enzyme inhibitory activity. This review is an immense compilation of research regarding the mechanism of action of chalcones and their identification as a promising anticancer agent for future drug developments. Thus, this review article would pave the way and provide ample opportunities to design future generations of novel, highly efficacious anticancer molecules with minimal toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520620999201124212840 | DOI Listing |
Viruses
December 2024
Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico.
Chikungunya virus (CHIKV) is classified as a pathogen with the potential to cause a pandemic. This situation becomes more alarming since no approved drug exists to combat the virus. The present research aims to demonstrate the anti-CHIKV activity of molecules present in the latex of .
View Article and Find Full Text PDFViruses
December 2024
Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
Unlike other ubiquitin-like family members, UBL5 is structurally and functionally atypical, and a novel role in various biological processes and diseases has been discovered. UBL5 can stabilize the structure of the spliceosome, can promote post-transcriptional processing, and has been implicated in both DNA damage repair and protein unfolding reactions, as well as cellular mechanisms that are frequently exploited by viruses for their own proliferation during viral infections. In addition, UBL5 can inhibit viral infection by binding to the non-structural protein 3 of rice stripe virus and mediating its degradation.
View Article and Find Full Text PDFViruses
December 2024
Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy.
The COVID-19 pandemic has encouraged the rapid development and licensing of vaccines against SARS-CoV-2. Currently, numerous vaccines are available on a global scale and are based on different mechanisms of action, including mRNA technology, viral vectors, inactive viruses, and subunit particles. Mass vaccination conducted worldwide has highlighted the potential development of side effects, including ones with skin involvement.
View Article and Find Full Text PDFViruses
November 2024
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada.
Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option.
View Article and Find Full Text PDFViruses
November 2024
Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France.
Most studies on the docking of ivermectin on the spike protein of SARS-CoV-2 concern the receptor binding domain (RBD) and, more precisely, the RBD interface recognized by the ACE2 receptor. The N-terminal domain (NTD), which controls the initial attachment of the virus to lipid raft gangliosides, has not received the attention it deserves. In this study, we combined molecular modeling and physicochemical approaches to analyze the mode of interaction of ivermectin with the interface of the NTD-facing lipid rafts of the host cell membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!