DNA bio-computing is an emerging trend in modern science that is based on interactions among biomolecules. Special types of DNAs are aptamers that are capable of selectively forming complexes with target compounds. This review is devoted to a discussion of logic gates based on aptamers for the purposes of medicine and analytical chemistry. The review considers different approaches to the creation of logic gates and identifies the general algorithms of their creation, as well as describes the methods of obtaining an output signal which can be divided into optical and electrochemical. Aptameric logic gates based on DNA origami and DNA nanorobots are also shown. The information presented in this article can be useful when creating new logic gates using existing aptamers and aptamers that will be selected in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700249 | PMC |
http://dx.doi.org/10.3390/ph13110417 | DOI Listing |
Anal Chem
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Cixi Biomedical Research Institute, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.
Accurate identification of cancer cells under complex physiological environments holds great promise for noninvasive diagnosis and personalized medicine. Herein, we developed dual-aptamer-based DNA logic-gated series lamp probes (Apt-SLP) by coupling a DNA cell-classifier (DCC) with a self-powered signal-amplifier (SSA), enabling rapid and sensitive identification of cancer cells in a blood sample. DCC is endowed with two extended-aptamer based modules for recognizing the two cascade cell membrane receptors and serves as a DNA logic gate to pinpoint a particular and narrow subpopulation of cells from a larger population of similar cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Lanzhou University, No. 222 Tianshui South Road, 730000, Lanzhou, CHINA.
Ion/electron-coupling logic operation is recognized as the most promising approach to achieving in-depth brain-inspired computing, but the lack of high-performance ion/electron-coupling devices with high operating frequencies much restricts the fast development of this field. Accordingly, we herein report an orthorhombic niobium pentoxide (T-Nb2O5) based lithium-ion capacitor diode (CAPode) that possesses thoroughly improved performances to achieve multifrequency ion/electron-coupling logic operations. Specifically, benefiting from the unique crystal structure and fast ion-transport topology of T-Nb2O5, the constructed CAPode exhibits a high response frequency of up to 122 Hz, over three orders of magnitude higher than those of the state-of-the-art CAPodes.
View Article and Find Full Text PDFSci Signal
January 2025
Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA.
Macrophages exposed to immune stimuli reprogram their epigenomes to alter their subsequent functions. Exposure to bacterial lipopolysaccharide (LPS) causes widespread nucleosome remodeling and the formation of thousands of de novo enhancers. We dissected the regulatory logic by which the network of interferon regulatory factors (IRFs) induces the opening of chromatin and the formation of de novo enhancers.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Beijing Key Lab for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
Optical computing offers advantages such as high bandwidth and low loss, playing a crucial role in signal processing, communication, and sensing applications. Traditional optical logic gates, based on nonlinear fibers and optical amplifiers, suffer from poor robustness and large footprints, hindering their on-chip integration. All-optical logic gates based on topological photonic crystals have emerged as a promising approach for developing robust and monolithic optical computing systems.
View Article and Find Full Text PDFACS Omega
December 2024
Post-Graduate and Research Department of Chemistry, The New College, University of Madras, Chennai 600014, India.
Four dual-responsive probe molecules 1,5-bis(thiophene-2-carbaldehyde)carbohydrazone (R1), 1,5-bis(thiophene-2-carbaldehyde)thiocarbohydrazone (R2), 1,5-bis(indole-3-carbaldehyde)carbohydrazone (R3), and 1,5-bis(indole-3-carbaldehyde)thiocarbohydrazone (R4) were synthesized, characterized, and investigated for their sensing efficacy. The initial sensing behavior of the probes was tested by colorimetric signaling, followed by spectral and theoretical techniques, which supported the dual-sensing ability of the selected inorganic ions. The probes exhibited highly selective optical recognition for Cu/Fe cations and F/ClO anions compared to the tested cations and anions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!