Interest in renewable polymers increased exponentially in the last decade and in this context poly(lactic acid) (PLA) became the leader mainly for practical reasons. Nevertheless, it is outstanding also from a scientific point of view, because its thermal and morphological properties are offering challenging new insights. With regard to dynamic mechanical analysis (DMA), PLA does not have the classical behavior of a thermoplastic polymer. Often, overlapping events (enthalpic relaxation, glass transition and crystallization) that occur as the temperature increases make the DMA result of a PLA look inexplicable even for polymer scientists. This review offers a perspective of the main phenomena that can be revealed in a DMA experiment and systematizes the information that can be obtained for every region (glassy, glass transition, rubbery, cold-crystallization and melting). Also, some unusual patterns registered in some cases will be commented upon. The review intends to offer indices that one should pay attention to in the interpretation of a DMA experiment, even if the investigator has only basic skills with DMA investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700632 | PMC |
http://dx.doi.org/10.3390/ma13225302 | DOI Listing |
Curr Cardiol Rep
January 2025
Department of Cardiovascular & Thoracic Surgery, Sandra Atlas Bass Heart Hospital at North Shore University Hospital, Northwell Health, 300 Community Drive, 1 DSU, Manhasset, NY, 11030, USA.
Purpose Of Review: This article discusses a tailored approach to managing cardiogenic shock and temporary mechanical circulatory support (tMCS). We also outline specific mobilization strategies for patients with different tMCS devices and configurations, which can be enabled by this tailored approach to cardiogenic shock management.
Recent Findings: Safe and effective mobilization of patients with cardiogenic shock receiving tMCS can be accomplished.
Otolaryngol Head Neck Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA.
Objective: To validate the use of neural radiance fields (NeRF), a state-of-the-art computer vision technique, for rapid, high-fidelity 3-dimensional (3D) reconstruction in endoscopic sinus surgery (ESS).
Study Design: An experimental cadaveric pilot study.
Setting: Academic medical center.
Nanomaterials (Basel)
January 2025
Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences (ISPM RAS), Profsoyuznaya St. 70, 117393 Moscow, Russia.
The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Analytical and Testing Center, Northeastern University, Shenyang 110819, China.
High-performance lightweight materials are urgently needed because of energy savings and emission reduction. Here, we design a new steel with a low density of 6.41 g/cm, which is a 20% weight reduction compared to the conventional steel.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China.
HOP-graphene is a graphene structural derivative consisting of 5-, 6-, and 8-membered carbon rings with distinctive electrical properties. This paper presents a systematic investigation of the effects of varying sizes, strain rates, temperatures, and defects on the mechanical properties of HOP-graphene, utilizing molecular dynamics simulations. The results revealed that Young's modulus of HOP-graphene in the armchair direction is 21.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!