Positron emission tomography (PET) radioligands (radioactively labelled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncology targets. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalysed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Methyl groups are among the most prevalent structural elements found in bioactive molecules, and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clinically used compounds [C]UCB-J and [C]PHNO. We further outline the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856055 | PMC |
http://dx.doi.org/10.1038/s41586-020-3015-0 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
Purpose: PSMA-PET is a reference standard examination for patients with prostate cancer, but even using recently introduced digital PET detectors image acquisition with standard field-of-view scanners is still in the range of 20 min. This may cause limited access to examination slots because of the growing demand for PSMA-PET. Ultra-fast PSMA-PET may enhance throughput but comes at the cost of poor image quality.
View Article and Find Full Text PDFEJNMMI Res
January 2025
Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Yale PET Center, Yale School of Medicine, New Haven, USA.
Purpose: The sphingosine-1-phosphate receptor-1 (S1PR) is involved in regulating responses to neuroimmune stimuli. There is a need for S1PR-specific radioligands with clinically suitable brain pharmcokinetic properties to complement existing radiotracers. This work evaluated a promising S1PR radiotracer, [F]TZ4877, in nonhuman primates.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.
Purpose: Temporal lobe epilepsy (TLE) is a brain network disorder closely associated with synaptic loss and has a genetic basis. However, the in vivo whole-brain synaptic changes at the network-level and the underlying gene expression patterns in patients with TLE remain unclear.
Methods: In this study, we utilized a positron emission tomography with the synaptic vesicle glycoprotein 2 A radioligand [F]SynVesT-1 cohort and two independent transcriptome datasets to investigate the topological properties of the synaptic density similarity network (SDSN) in TLE and its correlation with significantly dysregulated risk genes.
Pharmaceuticals (Basel)
November 2024
Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria.
: Dual-modality probes, combining positron emission tomography (PET) with fluorescence imaging (FI) capabilities in a single molecule, are of high relevance for the accurate staging and guided resection of tumours. We herein present a pair of candidates targeting the cholecystokinin-2 receptor (CCK2R), namely [Ga]Ga-CyTMG and [Ga]Ga-CyFMG. In these probes, the SulfoCy5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!