Patients with active implants such as deep brain stimulation (DBS) devices have limited access to magnetic resonance imaging (MRI) due to risks associated with RF heating of implants in MRI environment. With an aging population and increased prevalence of neurodegenerative disease, the indication for MRI exams in patients with such implants increases as well. In response to this growing need, many groups have investigated strategies to mitigate RF heating of DBS implants during MRI. These efforts fall into two main categories: MRI field-shaping methods, where the electric field of the MRI RF coil is modified to reduce the interaction with implanted leads, and lead management techniques where surgical modifications in the trajectory reduces the coupling with RF fields. Studies that characterize these techniques, however, have relied either on simulations with homogenous body models, or experiments with box-shaped single-material phantoms. It is well established, however, that the shape and heterogeneity of human body affects the distribution of RF electric fields, which by proxy, alters the heating of an implant inside the body. In this contribution, we applied numerical simulations and phantom experiments to examine the degree to which variations in patient's body composition affects RF power deposition. We then assessed effectiveness of RF-heating mitigation strategies under variant patient body compositions. Our results demonstrated that patient's body composition substantially alters RF power deposition in the tissue around implanted leads. However, both techniques based on MRI field-shaping and DBS lead management performed well under variant body types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693336 | PMC |
http://dx.doi.org/10.1088/1361-6560/abcde9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!