Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The bulk behavior of materials is often controlled by minor impurities that create nonperiodic localized defect structures due to ionic size, symmetry, and charge balance mismatches. Here, we used transmission electron microscopy (TEM) of atom-resolved dynamics to directly map the topology of Fe vacancy clusters surrounding structurally incorporated U in nanohematite (α-FeO). Ab initio molecular dynamic simulations provided additional independent constraints on coupled U, Fe, and vacancy mobility in the solid. A clearer understanding of how such an apparently incompatible element can be accommodated by hematite emerged. The results were readily interpretable without the need for sophisticated data reconstruction methods, model structures, or ultrathin samples, and with the proliferation of aberration-corrected TEM facilities, the approach is accessible. Given sufficient -contrast, the ability to observe impurity-vacancy structures by means of atom hopping can be used to directly probe the association of impurities and such defects in other materials, with promising applications across a broad range of disciplines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c02798 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!