Copper and zinc have a high binding affinity with a Staphylococcus aureus bacterial community. This causes a change in the biomolecular composition of S. aureus. Our study aims at understanding the resistance mechanism of Cu and Zn either or in various combinations using FTIR and chemometric techniques. Zn toxicity resulted in a significant change in lipid content (3100-2800 cm) compared to Cu. A significant decrease in protein content is observed for Cu treatment in the amide region. The bio-concentration factor shows a higher value for Cu compared to Zn. The increase in band area of carbohydrates moieties 1059 cm shows the secretion of EPS due to Cu toxicity. A significant change in nucleic acid compositions was noted in the region1200-900 cm due to Zn treatment. Secondary structural change in protein shows β sheet formation. The result of the finding shows Cu has greater toxicity than Zn. Further toxicity effects were greatly enhanced for metal mixtures ratio (Cu:2Zn). This shows Zn exhibits synergism effect with Cu. The obtained ROC (receiver operating characteristic) curve area gives good reliability of the experiments. The study attempts to understand the mechanism of toxicity removal of Cu and Zn metal mixtures by bacterial population using FTIR coupled with chemometric techniques. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719146 | PMC |
http://dx.doi.org/10.1007/s10867-020-09560-7 | DOI Listing |
J Vet Diagn Invest
December 2024
Animal Health Centre, Ministry of Agriculture and Food, Government of British Columbia, Abbotsford, British Columbia, Canada.
is one of the most important bacteria responsible for clinical bovine mastitis globally, leading to significant economic losses in the dairy industry. Antimicrobials used to treat and prevent mastitis can lead to antimicrobial resistance (AMR) in . We retrospectively evaluated AMR of isolates from clinical bovine mastitis cases submitted to the Animal Health Centre in British Columbia from 2013 to May 2024.
View Article and Find Full Text PDFJ Food Prot
December 2024
Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France. Electronic address:
Staphylococcus aureus is a pathogenic microorganism often found in animal-derived foods and is known for its ability to readily develop resistance to antibiotic treatments. This study was designed to determine prevalence of S. aureus strains in raw milk and meat in Italy and to evaluate their antibiotic resistance profiles and biofilm production.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo 060-8556, Japan. Electronic address:
Objectives: Staphylococcus aureus is a major cause of bloodstream infections. The recent epidemiological features and antimicrobial resistance trend were analyzed for methicillin-resistant and susceptible S. aureus (MRSA/MSSA) isolates from blood samples in northern Japan.
View Article and Find Full Text PDFArch Biochem Biophys
December 2024
Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA. Electronic address:
Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to oxaloacetate which serves as an important anaplerotic reaction to replenish citric acid cycle intermediates. In most organisms, the PC-catalyzed reaction is allosterically activated by acetyl-coenzyme A. It has previously been reported that vertebrate PC can catalyze the hydrolysis of acetyl-CoA, offering a potential means for the enzyme to attenuate its allosteric activation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China. Electronic address:
Plant-derived antibacterial agents are increasingly pivotal in mitigating the escalating threat posed by pathogenic microorganisms. Dihydromyricetin (DMY), a plant bioactive compound prevalent in Ampelopsis grossedentata, exhibits remarkable antibacterial properties. However, its poor solubility in water significantly hinders its application in antibacterial therapies, necessitating the exploration of suitable carriers for the loading and sustained release of DMY.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!