Systems with short hydrogen bonds (H-bonds) are notoriously difficult to describe even using cutting edge experimental techniques supported by advanced computational protocols. One of the most challenging issues is the highly dislocated H-bonded proton, which is typically smeared over a large area, featuring complex dynamics governed by pronounced nuclear quantum effects. Thus, in combination with experimental results, these systems offer a rich platform for the benchmarking of various computational approaches and methods. Herein, we present a methodology combining experimental and computational assessment of H-bond observables probed by the nuclear quadrupole resonance technique. Focusing on the case of picolinic acid N-oxide featuring one of the shortest known hydrogen bonds (ROO ∼ 2.425 Å), we compare the predictions of nuclear quadrupole coupling constants (NQCCs) for a series of computational models differing in fine structural details of the H-bond. By comparing the computed 14N and 17O NQCCs with the measured ones and by analyzing the sensitivity of NQCCs to H-bond geometry variations, we demonstrate that NQCCs represent a very sensitive probe for H-bond geometry, particularly the proton location, thereby offering, in conjunction with computations, an accurate and reliable tool for the fine structural characterization of short H-bonds. Importantly, the present methodology is a good compromise between accuracy and computational cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp04710d | DOI Listing |
Nanomaterials (Basel)
December 2024
Department No. 78 Physical and Technical Problems of Metrology, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.
Monodisperse films of spherical tantalum oxide (V) nanoclusters and spherical tantalum nanoclusters with a tantalum oxide shell with diameters of 1.4-8 nm were obtained by magnetron sputtering. The size of the deposited nanoclusters was controlled using a quadrupole mass filter.
View Article and Find Full Text PDFChemphyschem
January 2025
Universidad de Valladolid Facultad de Ciencias, Química Física y Química Inorgánica, SPAIN.
Indane-based molecules are effective scaffolds for different pharmaceutical products, so it is relevant to analyze the relation between structure and functionality in indane derivatives. Here, we have characterized the conformational landscape and molecular structure of 1-aminoindane in the gas phase using chirped-excitation Fourier-transform microwave spectroscopy and computational methods. The rotational spectrum confirmed the presence of two conformers, which were identified based on their rotational constants and 14N nuclear quadrupole coupling tensor elements.
View Article and Find Full Text PDFExp Neurol
January 2025
Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India. Electronic address:
Head trauma from blast exposure is a growing health concern, particularly among active military personnel, and is considered the signature injury of the Gulf War. However, it remains elusive whether fundamental differences exist between blast-related Traumatic Brain Injuries (TBI) and TBI due to other mechanisms. Considering the importance of lipid metabolism associated with neuronal membrane integrity and its compromise during TBI, we sought to find changes in lipidomic profiling during blast or blunt (Stereotaxically Controlled Contusison-SCC)-mediated TBI.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Nuclear Physics Institute of CAS, v.v.i., Husinec-Řež 130, 250 68 Řež, Czech Republic.
Two-dimensional molybdenum disulfide (MoS) exhibits interesting properties for applications in micro and nano-electronics. The key point for sensing properties of a device is the quality of the material's surface. In this study, MoS layers were deposited on polymers by pulsed laser deposition (PLD).
View Article and Find Full Text PDFLinear aliphatic oligoesters derived from ε-caprolactone (CL) were synthesized by ring-opening polymerization (ROP) using terpene alcohols that have antibacterial activity as initiators (nerol, geraniol, β-citronellol and farnesol). Ammonium decamolybdate (NH)[MoO] was used as a catalyst. From previous oligoesters, monodisperse species of monomers, dimers, and trimers were isolated by flash column chromatography (FCC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!