The assembly-disassembly of hyaluronic acid (HA) with a bovine serum albumin-conjugated gold nanoparticle (BSA-AuNP) was demonstrated using a gas-phase electrophoresis approach, electrospray-differential mobility analysis (ES-DMA). Physical sizes, number and mass concentrations, and degrees of aggregation of HA, BSA, and AuNP were successfully quantified using ES-DMA hyphenated with inductively coupled plasma mass spectrometry. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was employed complementarily for an orthogonal characterization of the assembly of HA with BSA-AuNP and the subsequent HA detachment. The results show that the surface packing density of HA on BSA-AuNP was proportional to the concentration of HA () when ≤ 5 × 10 μmol/L, and the equilibrium binding constant of HA on BSA-AuNP was identified as ≈ 4 × 10 L/mol at pH 3. The pH-sensitive and enzyme-induced detachments of HA from BSA-AuNP were both successfully characterized using ES-DMA and ATR-FTIR. In the absence of enzymatic catalysis, the rate constant of HA detachment () was shown to increase by at least 3.7 times on adjusting the environmental acidity from pH 3 to pH 7. A significant enzyme-induced HA detachment was identified at pH 7, showing a remarkable increase of by at least two times in the presence of an enzyme. This work provides a proof of concept for assembly of HA-based hybrid colloidal nanomaterials through the tuning of surface chemistry in the aqueous phase with the ability of in situ quantitative characterization, which has shown promise for the development of a variety of HA-derivative biomedical applications (e.g., drug delivery).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c02738DOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
8
gold nanoparticle
8
increase times
8
bsa-aunp
5
assembly detachment
4
detachment hyaluronic
4
acid protein-conjugated
4
protein-conjugated gold
4
nanoparticle assembly-disassembly
4
assembly-disassembly hyaluronic
4

Similar Publications

Photocrosslinkable formulations based on the radical thiol-ene reaction are considered better alternatives than methacrylated counterparts for light-based fabrication processes. This study quantifies differences between thiol-ene and methacrylated crosslinked hydrogels in terms of precursors stability, the control of the crosslinking process, and the resolution of printed features particularized for hyaluronic acid (HA) inks at concentrations relevant for bioprinting. First, the synthesis of HA functionalized with norbornene, allyl ether, or methacrylate groups with the same molecular weight and comparable degrees of functionalization is presented.

View Article and Find Full Text PDF

Treating Presbyphonia in 2024: A Scoping Review.

J Voice

December 2024

Department of Oto-Rhino-Laryngology and Head and Neck Surgery, AP-HM, Marseille, La Conception University Hospital, Aix-Marseille University, 147 Boulevard Baille, CEDEX 5, 13385 Marseille, France.

Presbyphonia is a multi-dimensional pathology. Therefore, its treatment should address its different affecting factors, including a global health management to fight geriatric frailty, improve overall physical strength, and limit medication side-effects. The specific therapies should address glottal gap closure and vocal folds' pliability.

View Article and Find Full Text PDF

Background/aim: In a tongue-submandibular lymph node (SLN) metastasis model, the cystine/glutamate transporter solute carrier family 7, member 11 (Slc7a11), also known as xCT, was found to increase in lymphatic endothelial cells (LECs) within SLNs prior to melanoma cell metastasis. However, the precise mechanism by which xCT influences LECs remains unclear. This study aimed to explore the role of xCT in primary cultured LECs.

View Article and Find Full Text PDF

A multifunctional graphene oxide-based nanodrug delivery system for tumor targeted diagnosis and treatment under chemotherapy-photothermal-photodynamic synergy.

Colloids Surf B Biointerfaces

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Traditional cancer therapies, such as chemotherapy, often lack specificity, resulting in severe toxic side effects and limited therapeutic efficacy. There is an urgent need to develop innovative multifunctional nanomedicine carriers that integrate precise diagnosis, targeted therapy, real-time monitoring, and the synergistic effects of multiple therapeutic approaches. In this study, a composite nanodrug delivery system (GO-HA-Ce6-GNRs) based on graphene oxide (GO) was innovatively prepared, which was functionalized with the targeting molecule hyaluronic acid (HA), the photosensitizer chlorin e6 (Ce6), and the photothermal material gold nanorods (GNRs).

View Article and Find Full Text PDF

Background: Ultrasonography allows real-time imaging of facial soft tissue during hyaluronic acid (HA) filler injections. However, there is currently limited guidance relating to ultrasound-guided HA filler placement in the upper face.

Aims: To develop guidance for the effective use of ultrasonography to improve the safety of HA filler injection procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!