A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cardiovascular disease and stroke risk assessment in patients with chronic kidney disease using integration of estimated glomerular filtration rate, ultrasonic image phenotypes, and artificial intelligence: a narrative review. | LitMetric

Chronic kidney disease (CKD) and cardiovascular disease (CVD) together result in an enormous burden on global healthcare. The estimated glomerular filtration rate (eGFR) is a well-established biomarker of CKD and is associated with adverse cardiac events. This review highlights the link between eGFR reduction and that of atherosclerosis progression, which increases the risk of adverse cardiovascular events. In general, CVD risk assessments are performed using conventional risk prediction models. However, since these conventional models were developed for a specific cohort with a unique risk profile and further these models do not consider atherosclerotic plaque-based phenotypes, therefore, such models can either underestimate or overestimate the risk of CVD events. This review examined the approaches used for CVD risk assessments in CKD patients using the concept of integrated risk factors. An integrated risk factor approach is one that combines the effect of conventional risk predictors and non-invasive carotid ultrasound image-based phenotypes. Furthermore, this review provided insights into novel artificial intelligence methods, such as machine learning and deep learning algorithms, to carry out accurate and automated CVD risk assessments and survival analyses in patients with CKD.

Download full-text PDF

Source
http://dx.doi.org/10.23736/S0392-9590.20.04538-1DOI Listing

Publication Analysis

Top Keywords

cvd risk
12
risk assessments
12
risk
11
cardiovascular disease
8
chronic kidney
8
kidney disease
8
estimated glomerular
8
glomerular filtration
8
filtration rate
8
artificial intelligence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!