Green chemistry, which aims at the development of efficient methods for the synthesis of nanoparticles, is a relatively new emerging field of nanotechnology, which has economic and environment-friendly benefits over chemical and physical processes. The present work was carried out to develop silver nanoparticles (Ag-NPs) using the plant (Achillea millefolium or yarrow) aqueous extract as both a reducing and capping agent under the green synthesis method. Characterization of synthesized Ag-NPs was done using IR spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-vis). The UV-vis spectrum showed the maximum absorbance at around 440-470 nm, which suggested the formation of green synthesized Ag-NPs. The morphological study demonstrated that the Ag-NPs were spherical in shape with an average size of 22.4 ± 7.4 nm. The antimicrobial activities of Ag-NPs against Fusarium and Aspergillus niger species of fungal and Escherichia coli species of bacteria were investigated through the disc diffusion and well-diffusion method using their zone of inhibition. The cytotoxicity effect of Ag-NPs on cell lines MOLT-4 was evaluated by using MTT assay. These nanoparticles showed remarkable antimicrobial activity against bacterias and fungus in low concentration. The cytotoxicity studies showed that IC of green synthesized Ag-NPs was 0.011 µm in comparison to 1.8 for Cisplatin which more active than anticancer drug for MOLT-4 cell line. The results showed that the green synthesized Ag-NPs are expected to have notable applications and can be potentially useful in pharmaceutical and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.26694DOI Listing

Publication Analysis

Top Keywords

green synthesized
16
synthesized ag-nps
16
silver nanoparticles
8
achillea millefolium
8
cell green
8
ag-nps
8
green
6
synthesized
5
medical cytotoxicity
4
cytotoxicity effects
4

Similar Publications

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Expression, characterization and anti-colon cancer activity of recombinant ginseng peptides with amino acid tandem repeats.

Protein Expr Purif

January 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China. Electronic address:

Ginseng peptides, small molecule active ingredients in ginseng, are mainly extracted naturally or synthesised chemically, but high costs and difficulties hinder further research. In this study, a ginseng hexapeptide FKEHGY, named antitumor peptide 0601 (AT0601) and its five tandem sequence repeats AT0605, were expressed in Bacillus subtilis WB600 for the first time, and the bioactivity study showed that the anticancer activity of AT0605 was even significantly higher than that of AT0601 for colon cancer CT26 cells, with IC50s of 16.82±1.

View Article and Find Full Text PDF

Environmentally-friendly rGO/Mn nanocomposites for efficient removal of tetracycline and its degradation pathway.

J Environ Manage

January 2025

Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China. Electronic address:

Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC.

View Article and Find Full Text PDF

Synthesis of 1,4-Diketones from Esters Enabled by a Tetraborylethane Reagent.

Org Lett

January 2025

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China.

A modular synthesis method for 1,4-diketones has been developed. Utilizing inexpensive carboxylic acid esters as carbonyl sources and tetraborylethane () as a nucleophilic reagent, a one-pot strategy for constructing two C-C bonds was established. Notably, this reaction proceeds without the involvement of transition metals and exhibits excellent functional group compatibility.

View Article and Find Full Text PDF

Canids act as a crucial intermediary in the transmission of rabies and , serving as co-infection hosts and pathogen carriers for both rabies and hydatid disease (HD) transmitted from animals to humans. Therefore, an effective and efficient bivalent oral vaccine for preventing HD and rabies is urgently required to reduce economic losses in husbandry resulting from rabies and HD. In this study, a full-length plasmid (pcDNA4-NPM+G+EgM123+eGFP+L) carrying the gene and fluorescence reporter genes of eGFP and four auxiliary transfection plasmids of rabies virus SRV (pcDNA4-N, pcDNA4-P, pcDNA4-G, pcDNA-L) were established by reverse genetics approaches and co-transfected to BSR cells by electrotransfection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!