Panax ginseng, a functional food, has been widely used as an edible nourishment and medicinal supplement. Ginsenoside Rb1 is a major bioactive ingredient of ginseng, which shows very specific anti-apoptosis and anti-oxidant activities. Methylglyoxal (MGO) is one of intermediate products of glucose metabolism, which is absorbed easily from high sugar foods or carbonated beverages. It may involve in a variety of detrimental processes in vivo. However, it has not been fully explored the effects of ginsenoside Rb1 on MGO-induced oocytes damage. This study found that MGO-induced DNA damage and mitochondrial dysfunction result in the failure of porcine oocytes maturation and low in vitro development capacity of parthenogenetic activation (PA) and in vitro fertilization (IVF) embryos. Conversely, Rb1 supplementation recovered the rate of maturation, and improved in vitro development capacity of PA and IVF embryos. Rb1 also provided porcine oocytes a lower level of reactive oxygen species production, higher level of ATP content and mitochondrial membrane potential, and stimulated pluripotency gene expression in blastocysts. The findings of this study reveal ginsenoside Rb1 protects porcine oocyte from the cytotoxicity effects of methylglyoxal and provides novel perspectives for the protection of reproduction system by functional food of ginseng.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.23063DOI Listing

Publication Analysis

Top Keywords

ginsenoside rb1
16
porcine oocytes
12
rb1 protects
8
protects porcine
8
parthenogenetic activation
8
activation vitro
8
vitro fertilization
8
functional food
8
vitro development
8
development capacity
8

Similar Publications

Ginsenoside Rb1 Relieves Cellular Senescence and Pulmonary Fibrosis by Promoting NRF2/QKI/SMAD7 Axis.

Am J Chin Med

January 2025

Department of Geriatrics, Hunan Provincial People's Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, P. R. China.

Article Synopsis
  • Cellular senescence contributes to pulmonary fibrosis (PF), but ginsenoside Rb1 has shown promise in inhibiting this process.
  • The study used mouse and cell models to investigate how ginsenoside Rb1 affects cellular senescence and PF, employing various staining and molecular techniques to assess cellular changes and gene expression.
  • Findings reveal that ginsenoside Rb1 alleviates senescence and fibrosis by activating the NRF2/QKI/SMAD7 signaling pathway, proposing a potential therapeutic approach for treating PF.
View Article and Find Full Text PDF

Biodegradable copper-containing mesoporous microspheres loaded with ginsenoside Rb1 for infarcted heart repair.

Biomater Adv

January 2025

Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China. Electronic address:

The current unavailability of efficient myocardial repair therapies constitutes a significant bottleneck in the clinical management of myocardial infarction (MI). Ginsenoside Rb1 (GRb1) has emerged as a compound with potential benefits in safeguarding myocardial cells and facilitating the regeneration of myocardial tissue. However, its efficacy in treating MI-related ischemic conditions is hampered by its low bioavailability and inadequate angiogenic properties.

View Article and Find Full Text PDF

Immobilization of snailase and β-glucosidase on L-aspartic acid-modified magnetic amorphous ZIF for efficiently and sustainably producing ginsenoside compound K.

Int J Biol Macromol

December 2024

School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:

Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).

View Article and Find Full Text PDF

Background: Rotator cuff tears (RCTs) are among the most common musculoskeletal disorders that affect quality of life. This study aimed to investigate the efficacy of ginsenoside Rb1 in RCTs and the mechanisms involved.

Methods: First, a fibrotic model of FAPs was induced, and FAPs were cultured in media supplemented with different concentrations of ginsenoside Rb1.

View Article and Find Full Text PDF

Immobilization of snailase on glutamate modified MIL-88B(Fe) to efficiently convert the rare ginsenoside CK with high enzyme recyclability and stability.

Int J Biol Macromol

January 2025

School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:

The carboxyl groups on MIL-88B(Fe) are crucial for the covalent immobilization of snailase, and the enzyme can convert common ginsenoside Rb1 into the rare ginsenoside compound K (CK) with higher bioavailability. The present study proposed glutamate-modified MIL-88B(Fe) for the immobilization of snailase to improve enzymatic activity and loading capacity. The surface topography characterized by SEM and CLSM indicated snailase was successfully encapsulated and uniformly distributed in the Sna@MIL-88B(Fe).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!