Osteoarthritis (OA) is a highly prevalent disease worldwide that causes disability and diminishes the quality of life of affected individuals. The disease is characterized by cartilage destruction, increased inflammatory responses and cholesterol metabolic disorder. Scutellarin is the major active ingredient extracted from , and it has been demonstrated to possess various pharmacological functions in the treatment of the disease. However, its effects on OA are complex. The present study investigated whether scutellarin can mediate the release of inflammatory cytokines, the expression of collagen- and cholesterol-related proteins, and regulate the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in a cell model of OA. Interleukin (IL)-1β was used to stimulate OA in SW1353 cells . The primary methods used were ELISA and western blotting, which were carried out to examine the effects of scutellarin on the cell model of OA. It was found that scutellarin increased the expression of collagen II and SRY-box 9, whereas it suppressed the expression of matrix metalloproteinase 13. In addition, scutellarin downregulated the expression levels of cholesterol 25-hydroxylase and cytochrome P450 family 7 subfamily B polypeptide 1, but upregulated the expression of apolipoprotein A-1 and adenosine triphosphate-binding cassette transporter A1. The IL-1β-induced increase in the expression of IL-6 was decreased by treatment with scutellarin; however, scutellarin did not alter the expression of C-reactive protein and tumor necrosis factor-α. The protein expression levels of AKT, phosphorylated (p)-AKT, mTOR and p-mTOR in the PI3K/AKT/mTOR signaling pathway were decreased in the IL-1β-induced SW1353 cells following scutellarin treatment. Overall, the findings of the present study demonstrated that scutellarin regulated OA by inhibiting the PI3K/AKT/mTOR signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2020.11722 | DOI Listing |
Sci Rep
December 2024
Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDFSci Rep
December 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.
View Article and Find Full Text PDFNat Commun
December 2024
Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, the Netherlands.
The Auxin Response Factors (ARFs) family of transcription factors are the central mediators of auxin-triggered transcriptional regulation. Functionally different classes of extant ARFs operate as antagonistic auxin-dependent and -independent regulators. While part of the evolutionary trajectory to the present auxin response functions has been reconstructed, it is unclear how ARFs emerged, and how early diversification led to functionally different proteins.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biology, California State University Northridge, Northridge, CA, USA.
The benefits of sleep extend beyond the nervous system. Peripheral tissues impact sleep regulation, and increased sleep is observed in response to damaging conditions, even those that selectively affect non-neuronal cells. However, the 'sleep need' signal released by stressed tissues is not known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!