Spider mite (Acari: Tetranychidae) outbreaks are common on corn grown in the arid West. Hot and dry conditions reduce mite development time, increase fecundity, and accelerate egg hatch. Climate change is predicted to increase drought incidents and produce more intense temperature patterns. Together, these environmental shifts may cause more frequent and severe spider mite infestations. Spider mite management is difficult as many commercially available acaricides are ineffective due to the development of resistance traits in field mite populations. Therefore, alternative approaches to suppress outbreaks are critically needed. Drought-tolerant plant hybrids alleviate the challenges of growing crops in water-limited environments; yet, it is unclear if drought-tolerant hybrids exposed to water stress affect mite outbreaks under these conditions. We conducted a greenhouse experiment to evaluate the effect of drought-tolerant corn hybrids on Banks grass mite [Oligonychus pratensis Banks (Acari: Tetranychidae)], a primary pest of corn, under optimal irrigation and water-stress irrigation. This was followed by a 2-yr field study investigating the effect of drought-tolerant corn hybrids exposed to the same irrigation treatments on Banks grass mite artificially infested on hybrids and resident spider mite populations. Results showed that water-stressed drought-tolerant hybrids had significantly lower Banks grass mite and resident spider mite populations than water-stressed drought-susceptible hybrids. Interestingly, water-stressed drought-tolerant hybrids had equal Banks grass mite populations to drought-susceptible and drought-tolerant hybrids under optimal irrigation. We posit that planting drought-tolerant hybrids may suppress spider mite outbreaks in water-challenged areas.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/toaa269DOI Listing

Publication Analysis

Top Keywords

spider mite
24
banks grass
20
grass mite
20
drought-tolerant hybrids
20
mite populations
16
mite
14
drought-tolerant corn
12
corn hybrids
12
hybrids exposed
12
hybrids
11

Similar Publications

Spatial distribution and sequential sampling plan for Oligonychus punicae (Acari: Trombidiformes: Tetranychidae) on grapevine.

J Econ Entomol

December 2024

Department of Agronomy - Entomology, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife - PE, 52171-900, Brazil.

Sequential sampling plans are employed for the rapid characterization of infestations to facilitate decision-making. This study aimed to (i) investigate the spatial distribution of Oligonychus punicae (Hirst) in grapevine crops, (ii) determine the most representative branch, leaf, and leaf region for monitoring, and (iii) develop a sequential sampling plan for decision-making to control O. punicae in the table grape varieties Arra 15, BRS Vitória, Cotton Candy, Sugar Crisp, and Timpson at different phenological stages.

View Article and Find Full Text PDF

Molecular target for sprayable double-stranded RNA-based biopesticide against Amphitetranychus viennensis (Acari, Tetranychidae).

Int J Biol Macromol

December 2024

College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China. Electronic address:

Amphitetranychus viennensis, a destructive pest mite of fruit plants in Europe and Asia, poses a serious challenge due to its adaptability and resistance to multiple acaricides. RNA interference (RNAi)-based technologies offer a promising alternative to address this emerging issue. In this study, we screened for candidate genes that can be targeted for spray-induced gene silencing (SIGS).

View Article and Find Full Text PDF

Background: Neoseiulus californicus is a predatory mite that can control various spider mites and other small arthropods. Despite its acknowledged effectiveness in the natural enemy market, a crucial knowledge gap exists in understanding the genomic features related to its predatory traits and adaptation. With the increasing emphasis on modern pest management strategies and dynamic environmental changes in plant production trends, constructing a reliable genomic resource for N.

View Article and Find Full Text PDF

Temperature influences demography and mass production of fed on .

Bull Entomol Res

December 2024

Department of Plant Protection, Takestan Branch, Islamic Azad University, Takestan, Iran.

Insects' development can be significantly impacted by various environmental factors, including temperature. Thus, this study aimed to investigate the effect of temperature on the predatory thrips, Priesner (Thysanoptera: Thripidae), which feeds on the strawberry spider mite, Ugarov and Nikolski (Trombidiformes: Tetranychidae). Under laboratory conditions (16:8 L:D, 75 ± 5% RH), the impact of various temperature regimens (15-37.

View Article and Find Full Text PDF

Conspecific cues mediate habitat selection and reproductive performance in a haplodiploid spider mite.

Curr Zool

December 2024

School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4472, New Zealand.

Selection of a suitable habitat by animals before settlement is critical for their survival and reproduction. In silk-spinning arthropods like spider mites, denser webs offer protection from predation and serve as a dispersal mode. Settling in habitats with the presence of conspecifics and silk webs can benefit the habitat-searching females.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!