Repair of thymine.guanine (T.G) and uracil.guanine (U.G) mismatched base-pairs in bacteriophage M13mp18 replicative form (RF) DNA was compared upon transfection into repair-proficient or repair-deficient Escherichia coli strains. Oligonucleotide-directed mutagenesis was used to prepare covalently closed circular heteroduplexes that contained the mismatched base-pair at a restriction recognition site. The heteroduplexes were unmethylated at dam (5'-GATC-3') sites to avoid methylation-directed biasing of repair. In an E. coli host containing uracil-DNA glycosylase (ung+), about 97% of the transfecting U.G-containing heteroduplexes had the U residue excised by the uracil-excision repair system. With the analogous T.G mispair, mismatch repair operated on almost all of the transfecting heteroduplexes and removed the T residue in about 75% of them when the mismatched T was on the minus strand of the RF DNA. Similar preferential excision of the minus-strand's mismatched base was observed whether the heteroduplex RF DNA molecules had only one or both strands unmethylated at dcm (5'-CC(A/T)GG-3') sites and whether the RF DNA was prepared by primer extension in vitro or by reannealing mutant and non-mutant DNA strands. Also, the extent and directionality of repair was the same at a U.G mispair in ung- host cells as at the analogous T.G mispair in ung- or ung+ cells. Only in a mismatch repair-deficient (mutH-) host was the plus strand of the transfecting M13mp18 heteroduplex DNA preferentially repaired. It is suggested that the plus strand nick made by the M13-encoded gene II protein might be employed by a mutH- host to initiate repair on that strand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0022-2836(87)90468-2 | DOI Listing |
Nucleic Acids Res
October 2006
Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
DNA interstrand crosslinks (ICLs) are highly cytotoxic lesions formed by a variety of important anti-tumor agents. Despite the clinical importance of ICLs, the mechanisms by which these lesions are repaired in mammalian cells have so far remained elusive. One of the obstacles in the study of ICL repair has been the limited availability of suitable methods for the synthesis of defined site-specific ICLs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!