Optical atomic clocks are a driving force for precision measurements due to the high accuracy and stability demonstrated in recent years. While further improvements to the stability have been envisioned by using entangled atoms, squeezing the quantum mechanical projection noise, evaluating the overall gain must incorporate essential features of an atomic clock. Here, we investigate the benefits of spin squeezed states for clocks operated with typical Brownian frequency noise-limited laser sources. Based on an analytic model of the closed servo-loop of an optical atomic clock, we report here quantitative predictions on the optimal clock stability for a given dead time and laser noise. Our analytic predictions are in good agreement with numerical simulations of the closed servo-loop. We find that for usual cyclic Ramsey interrogation of single atomic ensembles with dead time, even with the current most stable lasers spin squeezing can only improve the clock stability for ensembles below a critical atom number of about one thousand in an optical Sr lattice clock. Even with a future improvement of the laser performance by one order of magnitude the critical atom number still remains below 100,000. In contrast, clocks based on smaller, non-scalable ensembles, such as ion clocks, can already benefit from squeezed states with current clock lasers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686368 | PMC |
http://dx.doi.org/10.1038/s41467-020-19403-7 | DOI Listing |
Inorg Chem
January 2025
Department of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Zinc oxide (ZnO) is a semiconductor with a wide range of applications, and often the properties are modified by metal-ion doping. The distribution of dopant atoms within the ZnO crystal strongly affects the optical and magnetic properties, making it crucial to comprehend the structure down to the atomic level. Our study reveals the dopant structure and its contents in Eu-doped ZnO nanosponges with up to 20% Eu-O clusters.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Physics, Shandong University, Jinan 250100, China.
We apply the trajectory formulation to analyze the anomalous dynamics of cold atoms in an optical lattice. The phase space probability density function of cold atoms, their dynamics, and the mechanism of dynamic evolution from an initial Gaussian distribution to a power-law distribution are analyzed. The results of the trajectory formulation are in good agreement with the previously reported experimental results for the exponent of position variance for a long time and the position-momentum correlation.
View Article and Find Full Text PDFACS Nano
January 2025
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China.
Moiré superlattices, created by stacking different van der Waals materials at twist angles, have emerged as a versatile platform for exploring intriguing phenomena such as topological properties, superconductivity, the quantum anomalous Hall effect, and the unconventional Stark effect. Additionally, the formation of moiré superlattice potential can generate spontaneous symmetry breaking, leading to an anisotropic optical response and electronic transport behavior. Herein, we propose a two-step chemical vapor deposition (CVD) strategy for synthesizing WS/SbS moiré superlattices.
View Article and Find Full Text PDFNature
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
The forces generated by action potentials in muscle cells shuttle blood, food and waste products throughout the luminal structures of the body. Although non-invasive electrophysiological techniques exist, most mechanosensors cannot access luminal structures non-invasively. Here we introduce non-toxic ingestible mechanosensors to enable the quantitative study of luminal forces and apply them to study feeding in living Caenorhabditis elegans roundworms.
View Article and Find Full Text PDFNature
January 2025
Department of Mechanical Engineering, Columbia University, New York, NY, USA.
Mechanical force is an essential feature for many physical and biological processes, and remote measurement of mechanical signals with high sensitivity and spatial resolution is needed for diverse applications, including robotics, biophysics, energy storage and medicine. Nanoscale luminescent force sensors excel at measuring piconewton forces, whereas larger sensors have proven powerful in probing micronewton forces. However, large gaps remain in the force magnitudes that can be probed remotely from subsurface or interfacial sites, and no individual, non-invasive sensor is capable of measuring over the large dynamic range needed to understand many systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!