Background: Pathologic scarring including keloid and hypertrophic scar causes aesthetic and physical problems, and there are clinical difficulties (e.g., posttreatment recurrence) in dealing with pathologic scarring. Understanding the mechanisms that underlie scar control in wound healing will help prevent and treat pathologic scarring. The authors focused on CD206+ macrophages in the wound-healing process, and hypothesized that CD206+ macrophages have antifibrotic effects on fibroblasts.
Methods: The authors established a co-culture system for CD206+ macrophages and fibroblasts (cell ratio, 1:1). The authors examined the CD206+ macrophages' antifibrotic effects on fibroblasts after a 72-hour culture, focusing on fibrosis-related genes. To identify key factor(s) in the interaction between CD206+ macrophages and fibroblasts, the authors analyzed cytokines in a conditioned medium of the co-culture system.
Results: Under co-culture with CD206+ macrophages, expression of the following in the fibroblasts was significantly down-regulated: type 1 (fold change, 0.38) and type 3 collagen (0.45), alpha smooth muscle actin (0.24), connective tissue growth factor (0.40), and transforming growth factor-beta (0.66); the expression of matrix metalloproteinase 1 was significantly up-regulated (1.92). Conditioned medium in the co-culture showed a high interleukin (IL)-6 concentration (419 ± 88 pg/ml). When IL-6 was added to fibroblasts, antifibrotic changes in gene expression (as observed under the co-culture) occurred in the fibroblasts.
Conclusions: The authors' in vitro results revealed that CD206+ macrophages have antifibrotic effects on fibroblasts by means of a paracrine mechanism involving IL-6. Understanding these effects, especially in vivo, will help elucidate the mechanism of scar control in wound healing and contribute to the development of new scar treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PRS.0000000000007563 | DOI Listing |
Biomacromolecules
January 2025
Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India.
Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.
View Article and Find Full Text PDFBackground: The mechanism underlying chronic drug-induced liver injury (DILI) remains unclear. Immune activation is a common feature of DILI progression and is closely associated with metabolism. We explored the immunometabolic profile of chronic DILI and the potential mechanism of chronic DILI progression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
Inflammation significantly influences cellular communication in the oral environment, impacting tissue repair and regeneration. This study explores the role of small extracellular vesicles (sEVs) derived from lipopolysaccharide (LPS)-treated stem cells from the apical papilla (SCAP) in modulating macrophage polarization and osteoblast differentiation. SCAPs were treated with LPS for 24 h, and sEVs from untreated (SCAP-sEVs) and LPS-treated SCAP (LPS-SCAP-sEVs) were isolated via ultracentrifugation and characterized using transmission electron microscopy, Western blot, and Tunable Resistive Pulse Sensing.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia.
Macrophage (Mph) polarization and functional activity play an important role in the development of inflammatory lung conditions. The previously widely used bimodal classification of Mph into M1 and M2 does not adequately reflect the full range of changes in polarization and functional diversity observed in Mph in response to various stimuli and disease states. Here, we have developed a model for the direct assessment of Mph from bronchial alveolar lavage fluid (BALF) functional alterations, in terms of phagocytosis activity, depending on external stimuli, such as exposure to a range of bacteria (, and ).
View Article and Find Full Text PDFMolecules
January 2025
College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
var. (Willd.) Maesen & S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!