Identifying the mobilization mechanisms and predicting the potential toxicity risk of metals in sediment are essential to contamination remediation in river basins. In this study, a sequential extraction procedure and diffusive gradients in thin film (DGT) were employed to investigate the mobilization mechanisms, release characteristics, and potential toxicity of sediment metals (Cu, Zn, Ni, and Pb). Acid-soluble and reducible fractions were the dominant geochemical species of Cu, Zn, Ni, and Pb in sediments, indicating high mobility potentials for these metals under reducing conditions. In summer, the sediment acted as a source of water-column metals due to mineralization of organic matter and reductive dissolution of iron/manganese oxides in surface sediments, and the formation of metal sulfide precipitates markedly lowered DGT-labile metal concentrations with depth, while localized sulfide oxidation was responsible for fluctuating labile metal concentrations. Stable distribution patterns of labile metals resulted from the weak reducing conditions of sediment in winter, when the sediment shifted to a metal sink. The interstitial water criteria toxicity unit (IWCTU), calculated from DGT measurements, indicated no and low-to-moderate toxic risk of sediments in summer and winter seasons, respectively, and Pb was the major contributor to the predicted toxic effects in the soft interstitial water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.124590 | DOI Listing |
The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.
View Article and Find Full Text PDFDuring type 1 diabetes (T1D) progression, beta cells become dysfunctional and exhibit reduced first-phase insulin release. While this period of beta cell dysfunction is well established, its cause and underlying mechanism remain unknown. To address this knowledge gap, live human pancreas tissue slices were prepared from autoantibody- negative organ donors without diabetes (ND), donors positive for one or more islet autoantibodies (AAb+), and donors with T1D within 0-4 years of diagnosis (T1D+).
View Article and Find Full Text PDFBackground: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India. Electronic address:
Breast cancer (BC) is the most prevalent type of cancer in women worldwide and it is classified into a few distinct molecular subtypes based on the expression of growth factor and hormone receptors. Though significant progress has been achieved in the search for novel medications through traditional and advanced approaches, still we need more efficacious and reliable treatment options to treat different types and stages of BC. Sirtuins (SIRT1-7) a class III histone deacetylase play a major role in combating various cancers including BC.
View Article and Find Full Text PDFChemosphere
January 2025
Departamento de Química, Universidade Federal do Paraná, 81531-980, Curitiba-PR, Brasil.
Soil is regarded as a natural repository for strongly adsorbed pollutants since glyphosate (GLY) is preferentially adsorbed by the inorganic fraction of the soil, which may greatly limits its leaching. In this way, understanding how clay mineralogy influences the sorption and transport processes of glyphosate in soils with different mineralogical characteristics is highly relevant. In this work, two clay mineralogy contrasting soils were used to evaluate GLY retention: a Oxisol (OX) with high levels of iron oxides (amorphous and crystalline) and a Inceptisol (IN) with a predominance of kaolinite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!