Linear free energy relationship models for the retention of partially ionized acid-base compounds in reversed-phase liquid chromatography.

J Chromatogr A

Departament de Química Analítica i Institut de Biomedicina, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. Electronic address:

Published: January 2021

The LFER model of Abraham is applied to the retention of the neutral and ionic forms of 94 solutes in a C18 column and 40% v/v acetonitrile/water mobile phase. The results show that polarizability and cavity formation interactions increase retention, whereas dipole and hydrogen bonding interactions favours partition to the mobile phase and thus, they decrease retention. The coefficients of the ionic descriptors measure the effect of the electrostatic interactions and their contribution to partition of the cation or anion between the two mobile and stationary chromatographic phases. A new LFER model for application to the retention of partially dissociated acids and bases is derived averaging the descriptors of the neutral and ionic forms according to their degrees of ionization in the mobile phase. This new LFER model is satisfactorily compared to other literature modified Abraham models for a set of 498 retention data of partially dissociated acids and bases. All tested models require the calculation of the ionization degrees of the compounds at the measuring pH. Calculation of the ionization degrees in the chromatographic mobile phase (i.e. from pH and pK in the eluent) give good correlations for all tested models. However, estimation of these ionization degrees from pH - pK data in pure water gives biased estimations of the retention of the partially ionized solutes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2020.461720DOI Listing

Publication Analysis

Top Keywords

mobile phase
16
retention partially
12
lfer model
12
ionization degrees
12
partially ionized
8
neutral ionic
8
ionic forms
8
partially dissociated
8
dissociated acids
8
acids bases
8

Similar Publications

Objective: Studies indicate that stress levels of autistic adolescents may be particularly high. Therefore, support is needed to help them deal with their stressors. Stress Autism Mate (SAM) Junior, a mobile self-help tool, was designed in co-creation with adolescents with autism to help reduce daily stress levels.

View Article and Find Full Text PDF

High performance liquid chromatography (HPLC) is a key analytical technique that is used in a number of fields. Improving the separation efficiency, stability, and universality of HPLC has been a continuing analytical-chemistry focus. In chromatographic separation, factors such as the composition and ratio of the mobile phase, the type of stationary phase, and the dimensions of the chromatographic column significantly affect the separation efficiency.

View Article and Find Full Text PDF

To evade legal controls, new psychoactive substances (NPS), which have been designed as substitutes for traditional and synthetic drugs, are gradually dominating the drug market. Synthetic cannabinoids (SCs), which account for the majority of NPS, are rapidly being derivatized; consequently, controlling increasing abuse by merely listing individual compounds is difficult. Therefore, China has included the entire SC category of SCs listed as legal controlled substances since July 1, 2021.

View Article and Find Full Text PDF

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

Thromboxane A (TXA), a prothrombotic factor that induces platelet aggregation and thrombosis, acts as a vasoconstrictor by activating TXA receptors (TP receptors). TXA is extremely unstable and metabolizes into three major metabolites: 2,3-dinor thromboxane B (2,3-dinor-TXB), 11-dehydro TXB(11-dh-TXB), and 11-dehydro-2,3-dinor TXB(11-dh-2,3-dinor-TXB). 8-Iso-prostaglandin F(8-iso-PGF), a prostaglandin-like compound widely considered the best biomarker of oxidative stress, can also activate TP receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!