Sequence and unique phylogeny of genes of bovine respiratory syncytial viruses circulating in Japan.

J Vet Diagn Invest

National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.

Published: January 2021

Bovine respiratory syncytial virus (BRSV) is an etiologic agent of bovine respiratory disease. The rapid evolutionary rate of BRSV contributes to genetic and antigenic heterogeneity of field strains and causes occasional vaccine failure. We conducted molecular epidemiologic characterization of BRSV circulating in Japan to obtain genetic information for vaccine-based disease control. Phylogenetic analysis of and gene sequences revealed that all of the isolated Japanese BRSV strains clustered in the same genetic subgroup, which was distinct from the 9 known groups. We assigned the Japanese group to subgenotype X. The Japanese isolates formed 2 temporal clusters: isolates from 2003 to 2005 clustered in lineage A; isolates from 2017 to 2019 formed lineage B. The alignment of the deduced amino acid sequences of the gene revealed that the central hydrophobic region responsible for viral antigenicity is conserved in all of the isolates; unique amino acid mutations were found mainly in mucin-like regions. Our results suggest that BRSV has evolved uniquely in Japan to form the new subgenotype X; the antigenic homogeneity of the viruses within this group is inferred.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758693PMC
http://dx.doi.org/10.1177/1040638720975364DOI Listing

Publication Analysis

Top Keywords

bovine respiratory
12
respiratory syncytial
8
circulating japan
8
amino acid
8
brsv
5
sequence unique
4
unique phylogeny
4
phylogeny genes
4
genes bovine
4
syncytial viruses
4

Similar Publications

Thoracic Ultrasound in Cattle: Methods, Diagnostics, and Prognostics.

Vet Sci

January 2025

Beef Cattle Institute, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.

Thoracic ultrasonography (TUS) has emerged as a critical tool in the diagnosis and management of respiratory diseases in cattle, particularly bovine respiratory disease (BRD), which is one of the most economically significant health issues in feedyard operations. The objective of this review is to explore TUS in veterinary medicine, including the historical development, methodologies, and clinical applications for diagnosing and prognosing respiratory diseases. This review also emphasizes the importance of operator training, noting that even novice operators can achieve diagnostic consistency with proper instructions.

View Article and Find Full Text PDF

Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses.

Vaccines (Basel)

January 2025

Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.

An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5).

View Article and Find Full Text PDF

Bovine respiratory disease (BRD) is one of the most common economic and health challenges to the beef cattle industry. Prophylactic use of antimicrobial drugs can alter the microbial communities in the respiratory tract. Considering that the bovine upper respiratory tract microbiome has been associated with generalized health, understanding the microenvironment that influences this microbiome may provide insights into the pathogenesis of BRD.

View Article and Find Full Text PDF

The objective was to evaluate growth performance and carcass traits of finishing beef heifers sourced and finished in different regions in the U.S. Heifers [n = 190; initial body weight (BW) 483 ± 0.

View Article and Find Full Text PDF

Introduction: Probiotics are a promising intervention for modulating the microbiome and the immune system, promoting health benefits in cattle. While studies have characterized the calf lung bacterial profile with and without oral probiotics, simultaneous probiotic effects on the bacterial populations of multiple sites along the respiratory tract have not been characterized.

Methods: This study utilized the same pre-weaning diary calf group from our previous studies to characterize the bacterial populations present in the nostril and tonsil across control and treatment groups and nine sampling time points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!