Effect of Membrane Components of Transverse Forces on Magnitudes of Total Transverse Forces in the Nonlinear Stability of Plate Structures.

Materials (Basel)

Department of Strength of Materials, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, PL-90-924 Lodz, Poland.

Published: November 2020

For an isotropic square plate subject to unidirectional compression in the postbuckling state, components of transverse forces in bending, membrane transverse components and total components of transverse forces were determined within the first-order shear deformation theory (FSDT), the simple first-order shear deformation theory (S-FSDT), the classical plate theory (CPT) and the finite element method (FEM). Special attention was drawn to membrane components of transverse forces, which are expressed with the same formulas for the first three theories and do not depend on membrane deformations. These components are nonlinearly dependent on the plate deflection. The magnitudes of components of transverse forces for the four theories under consideration were compared.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699890PMC
http://dx.doi.org/10.3390/ma13225262DOI Listing

Publication Analysis

Top Keywords

transverse forces
24
components transverse
20
membrane components
8
first-order shear
8
shear deformation
8
deformation theory
8
transverse
7
forces
6
components
6
membrane
4

Similar Publications

Artificial neural networks' estimations of lower-limb kinetics in sidestepping: Comparison of full-body vs. lower-body landmark sets.

J Biomech

January 2025

School of Sport Science, Beijing Sport University, Beijing, China; Key Laboratory of Exercise Rehabilitation Science of the Ministry of Education, Beijing Sport University, Beijing, China. Electronic address:

Artificial neural networks (ANNs) offers potential for obtaining kinetics in non-laboratory. This study compared the estimation performance for ground reaction forces (GRF) and lower-limb joint moments during sidestepping between ANNs fed with full-body and lower-body landmarks. 71 male college soccer athletes executed sidestepping while three-dimensional kinematics and kinetics were collected to calculate joint moments by inverse dynamic.

View Article and Find Full Text PDF

: Toe flexor strength (TFS) has been determined to evaluate the toe flexor muscle function. However, it is unclear how strength and size relationships of toe flexor muscles vary depending on the toes intended for force production. We aimed to clarify this by examining the relationship between TFS and toe flexor muscle size, and hypothesized TFS produced by all toes (TFS-All), the great toe (TFS-Great) and lesser toes (TFS-Lesser) would be specifically associated with the size of the muscles specialized in each corresponding toe flexion.

View Article and Find Full Text PDF

The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.

View Article and Find Full Text PDF

: This study aimed to compare the effects of surgically assisted rapid palatal expansion (SARPE) techniques and their combinations on the stresses (von Mises, maximum principal, and minimum principal) and displacements that occur in the maxilla, facial bones, and maxillary teeth using three-dimensional finite element analysis (FEA). : SARPE was simulated using seven different osteotomy techniques. The FEA models were simulated with a combination of various osteotomies, including midpalatal and lateral osteotomies, lateral osteotomy with a step, and separation of the pterygomaxillary junction.

View Article and Find Full Text PDF

Effect of Clamped Member Material and Thickness on Bolt Self-Loosening Under Transverse Loads.

Materials (Basel)

January 2025

Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada.

Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening-a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!