Gait abnormalities such as high stride and step frequency/cadence (SF-stride/second, CAD-step/second), stride variability (SV) and low harmony may increase the risk of injuries and be a sentinel of medical conditions. This research aims to present a new markerless video-based technology for quantitative and qualitative gait analysis. 86 healthy individuals (mead age 32 years) performed a 90 s test on treadmill at self-selected walking speed. We measured SF and CAD by a photoelectric sensors system; then, we calculated average ± standard deviation (SD) and within-subject coefficient of variation (CV) of SF as an index of SV. We also recorded a 60 fps video of the patient. With a custom-designed web-based video analysis software, we performed a spectral analysis of the brightness over time for each pixel of the image, that reinstituted the frequency contents of the videos. The two main frequency contents (F1 and F2) from this analysis should reflect the forcing/dominant variables, i.e., SF and CAD. Then, a harmony index (HI) was calculated, that should reflect the proportion of the pixels of the image that move consistently with F1 or its supraharmonics. The higher the HI value, the less variable the gait. The correspondence SF-F1 and CAD-F2 was evaluated with both paired t-Test and correlation and the relationship between SV and HI with correlation. SF and CAD were not significantly different from and highly correlated with F1 (0.893 ± 0.080 Hz vs. 0.895 ± 0.084 Hz, < 0.001, r = 0.99) and F2 (1.787 ± 0.163 Hz vs. 1.791 ± 0.165 Hz, < 0.001, r = 0.97). The SV was 1.84% ± 0.66% and it was significantly and moderately correlated with HI (0.082 ± 0.028, < 0.001, r = 0.13). The innovative video-based technique of global, markerless gait analysis proposed in our study accurately identifies the main frequency contents and the variability of gait in healthy individuals, thus providing a time-efficient, low-cost means to quantitatively and qualitatively study human locomotion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699971 | PMC |
http://dx.doi.org/10.3390/s20226654 | DOI Listing |
Med Biol Eng Comput
January 2025
Biomedical Engineering, Bahçeşehir University, Çırağan Caddesi Osmanpaşa Mektebi Sokak No: 4-6 Beşiktaş, İstanbul, 34353, Turkey.
This study aims to understand the impact of backpack carriage, a regular activity for many, on back muscles and joint mobility during walking so that clinicians can develop strategies or products to ensure individuals' safety and well-being. Surface electromyography (EMG) and XSENS Awinda motion capture systems were used to analyze the effects of carrying a backpack (12% of body weight) on erector spinae and multifidus muscles, as well as spinal, hip, knee, and ankle joints. Subjects walked at 4 km/h on flat and inclined surfaces.
View Article and Find Full Text PDFJ Clin Med
January 2025
IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy.
While the importance of the upper and lower limbs in locomotion is well understood, the kinematics of the trunk during walking remains largely unexplored. Two decades ago, a casual observation was reported indicating spine lengthening in a small sample of mostly children during walking, but this observation was never replicated. Objectives: This study aims to verify the preliminary observation that spine lengthening occurs during walking and to explore changes in spine kinematics across three different age groups.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Pediatric Neurology, ERN-RND, Euro-NMD, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
Sensors (Basel)
December 2024
Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
The analysis of running gait has conventionally taken place within an expensive and restricted laboratory space, with wearable technology offering a practical, cost-effective, and unobtrusive way to examine running gait in more natural environments. This pilot study presents a wearable inertial measurement unit (IMU) setup for the continuous analysis of running gait during an outdoor parkrun (i.e.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Street, 61-138 Poznan, Poland.
This paper is dedicated to the analysis of a foot prosthesis optimization process, with a particular focus on the application of optimization algorithms and unconventional materials, such as auxetic materials. The study aims to enhance prosthesis performance by minimizing the difference between the ground reaction force generated by the prosthetic foot and that of a natural limb. In the initial part of the study, the basic topics concerning the parameterization of the foot prosthesis geometry and the preparation of a finite element model for human gait are discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!