To counteract food fraud, this study aimed at the differentiation of walnuts on a global and regional level using an isotopolomics approach. Thus, the multi-elemental profiles of 237 walnut samples from ten countries and three years of harvest were analyzed with inductively coupled plasma mass spectrometry (ICP-MS), and the resulting element profiles were evaluated with chemometrics. Using support vector machine (SVM) for classification, validated by stratified nested cross validation, a prediction accuracy of 73% could be achieved. Leave-one-out cross validation was also applied for comparison and led to less satisfactory results because of the higher variations in sensitivity for distinct classes. Prediction was still possible using only elemental ratios instead of the absolute element concentrations; consequently, a drying step is not mandatory. In addition, the isotopolomics approach provided the classification of walnut samples on a regional level in France, Germany, and Italy, with accuracies of 91%, 77%, and 94%, respectively. The ratio of the model's accuracy to a random sample distribution was calculated, providing a new parameter with which to evaluate and compare the performance of classification models. The walnut cultivar and harvest year had no observable influence on the origin differentiation. Our results show the high potential of element profiling for the origin authentication of walnuts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699883 | PMC |
http://dx.doi.org/10.3390/foods9111708 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!