The pre-metastatic niche (PMN) is a tumor-driven microenvironment in distant organs that can foster and support the survival and growth of disseminated tumor cells. This facilitates the establishment of secondary lesions that eventually form overt metastasis, the main cause of cancer-related death. In recent years, tumor-derived extracellular-vesicles (EVs) have emerged as potentially key drivers of the PMN. The role of the PMN in osteosarcoma metastasis is poorly understood and the potential contribution of osteosarcoma cell-derived EVs to PMN formation has not been investigated so far. Here, we characterize pulmonary PMN development using the spontaneously metastasizing 143-B xenograft osteosarcoma mouse model. We demonstrate the accumulation of CD11b myeloid cells in the pre-metastatic lungs of tumor-bearing mice. We also establish that highly metastatic 143-B and poorly metastatic SAOS-2 osteosarcoma cell-derived EV education in naïve mice can recapitulate the recruitment of myeloid cells to the lungs. Surprisingly, despite EV-induced myeloid cell infiltration in the pre-metastatic lungs, 143-B and SAOS-2 EVs do not contribute towards the 143-B metastatic burden in the context of both spontaneous as well as experimental metastasis in severe-combined immunodeficient (SCID) mice. Taken together, OS-derived EVs alone may not be able to form a functional PMN, and may perhaps require a combination of tumor-secreted factors along with EVs to do so. Additionally, our study gives a valuable insight into the PMN complexity by providing the transcriptomic signature of the premetastatic lungs in an osteosarcoma xenograft model for the first time. In conclusion, identification of regulators of cellular and molecular changes in the pre-metastatic lungs might lead to the development of a combination therapies in the future that interrupt PMN formation and combat osteosarcoma metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699714PMC
http://dx.doi.org/10.3390/cancers12113457DOI Listing

Publication Analysis

Top Keywords

pre-metastatic lungs
12
pre-metastatic niche
8
143-b xenograft
8
pmn
8
osteosarcoma metastasis
8
osteosarcoma cell-derived
8
pmn formation
8
myeloid cells
8
143-b metastatic
8
osteosarcoma
7

Similar Publications

Development of Liver-Targeting αβ Exosomes as Anti-TGF-β Nanocarriers for the Treatment of the Pre-Metastatic Niche.

Biology (Basel)

December 2024

Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, BC, Mexico.

Liver metastases frequently occur in pancreatic and colorectal cancer. Their development is promoted by tumor-derived exosomes with the integrin αβ on their membrane. This integrin directs exosomes to the liver, where they promote a TGF-β-dependent pre-metastatic niche.

View Article and Find Full Text PDF

Lung metastases occur in up to 54% of patients with metastatic tumours. Contributing factors to this high frequency include the physical properties of the pulmonary system and a less oxidative environment that may favour the survival of cancer cells. Moreover, secreted factors from primary tumours alter immune cells and the extracellular matrix of the lung, creating a permissive pre-metastatic environment primed for the arriving cancer cells.

View Article and Find Full Text PDF

Regulation of metastatic organotropism.

Trends Cancer

December 2024

Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA; Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Metastasis is responsible for most cancer-related deaths. Different cancers have their own preferential sites of metastases, a phenomenon termed metastatic organotropism. The mechanisms underlying organotropism are multifactorial and include the generation of a pre-metastatic niche (PMN), metastatic homing, colonization, dormancy, and metastatic outgrowth.

View Article and Find Full Text PDF

Pulmonary lysyl oxidase expression and its role in seeding Lewis lung carcinoma cells.

Clin Exp Metastasis

December 2024

Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA.

Copper promotes tumor growth and metastasis through a variety of mechanisms, most notably as a cofactor within the lysyl oxidase (LOX) family of secreted cuproenzymes. Members of this family, which include LOX and LOX-like enzymes LOXL1-4, catalyze the copper-dependent crosslinking of collagens and elastin within the extracellular matrix (ECM). Elevated LOX expression is associated with higher incidence and worse prognosis in multiple cancers, including colorectal, breast, pancreatic, and head and neck.

View Article and Find Full Text PDF

Salivary adenoid cystic carcinoma-derived α2,6-sialylated extracellular vesicles increase vascular permeability by triggering ER-stress in endothelial cells and promote lung metastasis.

Cancer Lett

December 2024

Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China. Electronic address:

Salivary adenoid cystic carcinoma (SACC) tends to metastasize to the lungs in the early stages of the disease. Factors secreted by the primary tumor can induce the formation of a supportive microenvironment in distant organs prior to metastasis, a process known as pre-metastatic niche (PMN) formation. Extracellular vesicles (EVs) participate in PMN formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!