It is known that plant lipid transfer proteins (LTPs) bind a broad spectrum of ligands including fatty acids (FAs), phospho- and glycolipids, acyl-coenzyme A and secondary metabolites. In this work, we used protein-lipid overlay assays to identify new putative LTP ligands. In our experiments, the lentil lipid transfer protein Lc-LTP2 as well as LTPs from other plants were shown to bind phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2). Molecular modeling, 2-p-toluidinonaphthalene-6-sulphonate (TNS) displacement and liposome leakage experiments with Lc-LTP2 and its mutant analogs (R45A, Y80A, R45A/Y80A) were performed to investigate interactions between the protein and PI(4,5)P2. It was shown that PI(4,5)P2 initially interacted with the "bottom" entrance of the protein cavity and after complex formation the large polar head of this ligand was also oriented towards the same entrance. We also found that two highly conserved residues in plant LTPs, Arg45 and Tyr80, played an important role in protein-ligand interactions. Apparently, Arg45 is a key residue for interaction with PI(4,5)P2 during both initial contacting and holding in the protein cavity, while Tyr80 is probably a key amino acid playing an essential role in Lc-LTP2 docking to the membrane. Thus, we assumed that the ability of Lc-LTP2 to bind PI(4,5)P2 suggests the involvement of this protein in plant signal transduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699592PMC
http://dx.doi.org/10.3390/membranes10110357DOI Listing

Publication Analysis

Top Keywords

lipid transfer
12
lentil lipid
8
transfer protein
8
protein lc-ltp2
8
protein cavity
8
protein
6
pi45p2
6
lc-ltp2
5
interaction lentil
4
lc-ltp2 novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!