Van-der Waals heterostructures assembled from one or few atomic layer thickness crystals are becoming increasingly more popular in condensed matter physics. These structures are assembled using transfer machines, those are based on mask aligners, probe stations or are home-made. For many laboratories it is vital to build a simple, convenient and universal transfer machine. In this paper we discuss the guiding principles for the design of such a machine, review the existing machines and demonstrate our own construction, that is powerful and fast-in-operation. All components of this machine are extremely cheap and can be easily purchased using common online retail services. Moreover, assembling a heterostructure out of exfoliated commercially available hexagonal boron nitride and tungsten diselenide crystals with a pick-up technique and using the microphotolumenescence spectra, we show well-resolved exciton and trion lines, as a results of disorder suppression in WSe2 monolayer. Our results thus show that technology of the two-dimensional materials and heterostructures becomes accessible to anyone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700158 | PMC |
http://dx.doi.org/10.3390/nano10112305 | DOI Listing |
Nanoscale
January 2025
School of Science, Jiangsu University of Science and Technology, Zhenjiang 212001, China.
Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.
View Article and Find Full Text PDFACS Nano
January 2025
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China.
Moiré superlattices, created by stacking different van der Waals materials at twist angles, have emerged as a versatile platform for exploring intriguing phenomena such as topological properties, superconductivity, the quantum anomalous Hall effect, and the unconventional Stark effect. Additionally, the formation of moiré superlattice potential can generate spontaneous symmetry breaking, leading to an anisotropic optical response and electronic transport behavior. Herein, we propose a two-step chemical vapor deposition (CVD) strategy for synthesizing WS/SbS moiré superlattices.
View Article and Find Full Text PDFNanoscale
December 2024
University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warsaw, Poland.
Raman spectroscopy is a powerful analytical method widely used in many fields of science and applications. However, one of the inherent issues of this method is a low signal-to-noise ratio for ultrathin and two-dimensional (2D) materials. To overcome this problem, techniques like surface-enhanced Raman spectroscopy (SERS) that rely on nanometer scale metallic particles are commonly employed.
View Article and Find Full Text PDFRSC Adv
December 2024
Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University Chongqing 400715 China
Heterostructures can efficiently modulate the bandgap of semiconductors and enhance the separation of photocarriers, thereby enhancing the performance of optoelectronic devices. Herein, we design an InS/ZnInS van der Waals (vdW) heterostructure and investigate its electronic and photovoltaic properties using first principles calculation. Compared to its individual monolayers, the InS/ZnInS heterostructure not only possesses a smaller band gap of 2.
View Article and Find Full Text PDFACS Nano
December 2024
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
Reconfigurable field-effect transistors (RFETs) offer notable benefits on electronic and optoelectronic logic circuits, surpassing the integration, flexibility, and cost-efficiency of conventional complementary metal-oxide semiconductor transistors. The low on/off current ratio of these transistors remains a considerable impediment in the practical application of RFETs. To overcome these limitations, a van der Waals heterojunction (vdWH) transistor composed of WSe/TaNiSe has been proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!