A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of the incorporation of β-galactosidase in the GOS production during manufacture of soft cheese. | LitMetric

Effect of the incorporation of β-galactosidase in the GOS production during manufacture of soft cheese.

Food Res Int

Instituto de Lactología Industrial-Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas y Técnicas (INLAIN-UNL/CONICET), Santiago del Estero 2829, S3000AOM Santa Fe, Argentina.

Published: November 2020

Galactooligosaccharides (GOS) are non-digestible oligosaccharides with recognized prebiotic role. The present study aims to evaluate a β-galactosidase from K. lactis during soft cheese making and to analyse the impact on carbohydrates metabolism, proteolysis, and volatile compounds production, physicochemical and microbiological characteristics of the product. The enzyme was added to cheese milk (fluid milk plus whey powder) before (40 min.) or simultaneously of the starter addition (Ep and E treatments, respectively); cheese without enzyme addition was also made (C treatment). Also, we characterized fresh and soft commercial cheeses from the point of view of carbohydrate fraction, highlighting GOS, and organic acid profiles. The inclusion of the enzyme in soft cheese making produced a delay in reaching the target pH (~5.2). Carbohydrate fermentation profiles differed among treatments during cheese making and ripening. GOS were only detected in Ep and E cheeses (0.88 and 0.51 g/100 g, respectively). Lactose content was lower, and glucose and galactose levels were higher in E and Ep than C. No differences in physicochemical and microbial composition and organic acids profiles among samples were observed. Bioformation of volatile compounds belonging to the chemical families of aldehydes, ketones, alcohols, esters and acids, was not substantially affected by the modification in the carbohydrate profile. GOS were not detected in any of the commercial cheeses; great variations in the carbohydrate contents and organic acids were found. The results obtained demonstrate the feasibility of obtaining cheeses with GOS. Although the GOS values achieved are not adequate enough for the desired effect, the proposed technological approach turned out to be satisfying and original. Cheeses with prebiotic fiber are not still widespread in the market.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2020.109654DOI Listing

Publication Analysis

Top Keywords

soft cheese
12
cheese making
12
volatile compounds
8
treatments cheese
8
commercial cheeses
8
gos detected
8
organic acids
8
gos
7
cheese
6
cheeses
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!