Evaluation of the fate of Lactobacillus crispatus BC4, carried in Squacquerone cheese, throughout the simulator of the human intestinal microbial ecosystem (SHIME).

Food Res Int

Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena (FC), Italy; Interdepartmental Center for Industrial Agri-food Research, University of Bologna, via Quinto Bucci 336, 47521 Cesena (FC), Italy.

Published: November 2020

Lactobacillus crispatus strain BC4, isolated from the human healthy vaginal environment and characterised by a strong antimicrobial activity against urogenital pathogens and foodborne microorganisms, was employed as a probiotic culture in the cheesemaking of the soft cheese Squacquerone. Such cheese is intended as a "gender food", that could be used as a hedonistic dietary strategy to reduce the incidence of woman vaginal dysbiosis and infections, given the evidence that a probiotic strain able to survive to the entire digestive process once ingested, can pass from intestine to vagina. This work was aimed to evaluate the resistance of L. crispatus BC4, carried in Squacquerone cheese, to different challenges of the human gastrointestinal tract, including the colon stage. The digestion process was tested using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). The viability and metabolic activity of L. crispatus BC4 during the colon simulation were monitored by qPCR and gas chromatography, respectively, also in the presence of a complex microbiota. The results showed that L. crispatus BC4 survival was not affected by the gastric condition, while it was significantly affected by bile salts and pancreatic juice in small intestine conditions, where it decreased of approx. 0.6 log (colony-forming units) CFU/g. Differently, during colon simulation L. crispatus BC4 was able to grow in sterile colon conditions and to maintain viability in the presence of a complex microbiota. Moreover, during colon simulation, L. crispatus BC4 was metabolically active as demonstrated by the higher production of short chain fatty acids (SCFA) and lactate. In the presence of a complex gut microbiota, a decrease of lactate was observed, due to its conversion into propionate (anti-cholesterol activity) and butyrate (anti-inflammatory activity) by cross-feeding. However, no differences in propionate and butyrate production could be observed between control cheese and cheese containing L. crispatus BC4. Despite this may appear as a negative outcome, it must be taken into account that, in this setup, only a single dose of the cheese was tested and the outcome of the colonization and impact of the gut microbiota might be different when daily repeated doses are tested.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2020.109580DOI Listing

Publication Analysis

Top Keywords

crispatus bc4
28
squacquerone cheese
12
colon simulation
12
presence complex
12
crispatus
8
lactobacillus crispatus
8
bc4
8
bc4 carried
8
carried squacquerone
8
simulator human
8

Similar Publications

Background: Exopolysaccharides (EPS) secreted by beneficial lactobacilli exert a plethora of positive activities, but little is known about their effects on biofilms of opportunistic vaginal pathogens and especially on biofilms of lactobacilli themselves. Here, the EPS produced by six vaginal lactobacilli, belonging to Lactobacillus crispatus (BC1, BC4, BC5) and Lactobacillus gasseri (BC9, BC12, BC14) species were isolated from cultural supernatants and lyophilized.

Results: Lactobacillus EPS were chemically characterized in terms of monosaccharide composition by liquid chromatography (LC) analysis coupled to UV and mass spectrometry (MS) detection.

View Article and Find Full Text PDF

The main aim of this work was to verify the metabolic and functional aptitude of 15 vaginal strains belonging to , , and (previously ), already characterized for their technological and antimicrobial properties. In order to evaluate the metabolic profile of these vaginal strains, a phenotype microarray analysis was performed on them. Functional parameters such as hydrophobicity, auto-aggregation, deconjugation of bile salts, adhesion to an intestinal cell line (Caco-2), and a simulated digestion process were evaluated for these strains.

View Article and Find Full Text PDF

Evaluation of the fate of Lactobacillus crispatus BC4, carried in Squacquerone cheese, throughout the simulator of the human intestinal microbial ecosystem (SHIME).

Food Res Int

November 2020

Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena (FC), Italy; Interdepartmental Center for Industrial Agri-food Research, University of Bologna, via Quinto Bucci 336, 47521 Cesena (FC), Italy.

Lactobacillus crispatus strain BC4, isolated from the human healthy vaginal environment and characterised by a strong antimicrobial activity against urogenital pathogens and foodborne microorganisms, was employed as a probiotic culture in the cheesemaking of the soft cheese Squacquerone. Such cheese is intended as a "gender food", that could be used as a hedonistic dietary strategy to reduce the incidence of woman vaginal dysbiosis and infections, given the evidence that a probiotic strain able to survive to the entire digestive process once ingested, can pass from intestine to vagina. This work was aimed to evaluate the resistance of L.

View Article and Find Full Text PDF

This research is aimed to evaluate the suitability of Squacquerone cheese to support the viability of Lactobacillus crispatus BC4, a vaginal strain endowed with a strong antimicrobial activity against urogenital pathogens and foodborne microorganisms, in order to recommend a gender food for woman wellbeing. The viability of L. crispatus BC4, used as adjunct culture, was evaluated during the refrigerated storage of Squacquerone cheese, as well as when the cheese was subjected to simulated stomach-duodenum passage tested by the patented Simulator of the Human Intestinal Microbial Ecosystem (SHIME).

View Article and Find Full Text PDF

Healthy vaginal microbiota is dominated by Lactobacillus spp., which form a critical line of defence against pathogens, including Candida spp. The present study aims to identify vaginal lactobacilli exerting in vitro activity against Candida spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!