Inhibition of endogenous protease is a rapid and feasible approach to control the proteolysis proceeding of post mortem fish flesh. In the present study, the in vitro inhibitory effects of common edible di- and tri-carboxylic acids and salts on endogenous proteolytic activities as well as myofibrillar disassembly and degradation mediated by crude enzyme of grass carp muscle were investigated. The results showed that among the compounds tested, maleic acid, fumaric acid, tartaric acid and malic acid were the most effective inhibitor for cathepsin B, L and calpain, with IC ranging from 7.76 to 30.13 mM, from 32.38 to 65.12 mM, from 1.06 to 6.76 mM, respectively. Also, relatively lower Ki (ranging from 1.04 to 43.21 mM) of these compounds were found towards cathepsin B, L and calpain. Incubation of myofibrillar protein with crude enzyme in the presence of di- and tri-carboxylic compounds could remarkably suppress the dissociation and degradation of myosin heavy chain (MHC), and ameliorate the loss of heat shock protein (HSP) in myofibrils, with tartaric acid and fumaric acid proved more effective than other compounds, possibly implicating their application as potential and efficient inhibitors for quality control of fish muscle products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2020.109457DOI Listing

Publication Analysis

Top Keywords

endogenous protease
8
disassembly degradation
8
grass carp
8
di- tri-carboxylic
8
crude enzyme
8
acid fumaric
8
fumaric acid
8
tartaric acid
8
cathepsin calpain
8
acid
6

Similar Publications

The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.

View Article and Find Full Text PDF

Background: The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences.

Methodology/principal Findings: In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C.

View Article and Find Full Text PDF

Structural Dynamics of the Ubiquitin Specific Protease USP30 in Complex with a Cyanopyrrolidine-Containing Covalent Inhibitor.

J Proteome Res

January 2025

Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, U.K.

Inhibition of the mitochondrial deubiquitinating (DUB) enzyme USP30 is neuroprotective and presents therapeutic opportunities for the treatment of idiopathic Parkinson's disease and mitophagy-related disorders. We integrated structural and quantitative proteomics with biochemical assays to decipher the mode of action of covalent USP30 inhibition by a small-molecule containing a cyanopyrrolidine reactive group, . The inhibitor demonstrated high potency and selectivity for endogenous USP30 in neuroblastoma cells.

View Article and Find Full Text PDF

Breath biopsy is emerging as a rapid and non-invasive diagnostic tool that links exhaled chemical signatures with specific medical conditions. Despite its potential, clinical translation remains limited by the challenge of reliably detecting endogenous, disease-specific biomarkers in breath. Synthetic biomarkers represent an emerging paradigm for precision diagnostics such that they amplify activity-based biochemical signals associated with disease fingerprints.

View Article and Find Full Text PDF

An Assay System for Plate-based Detection of Endogenous Peptide:-glycanase/NGLY1 Activity Using A Fluorescence-based Probe.

Bio Protoc

January 2025

Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Riken, 2-1 Hirosawa, Wako Saitama, Japan.

Cytosolic peptide:-glycanase (PNGase/NGLY1 in mammals), an amidase classified under EC:3.5.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!