Autonomous sensory meridian response (ASMR) is a perceptual phenomenon characterized by pleasurable tingling sensations in the head and neck, as well as pleasurable feelings of relaxation, that reliably arise while attending to a specific triggering stimulus (e.g., whispering or tapping sounds). Currently, little is known about the neutral substrates underlying these experiences. In this study, 14 participants who experience ASMR, along with 14 control participants, were presented with four video stimuli and four auditory stimuli. Half of these stimuli were designed to elicit ASMR and half were non-ASMR control stimuli. Brain activity was measured using a 32-channel EEG system. The results indicated that ASMR stimuli-particularly auditory stimuli-elicited increased alpha wave activity in participants with self-reported ASMR, but not in matched control participants. Similar increases were also observed in frequency bands associated with movement (gamma waves and sensorimotor rhythm). These results are consistent with the reported phenomenology of ASMR, which involves both attentional and sensorimotor characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.concog.2020.103053DOI Listing

Publication Analysis

Top Keywords

autonomous sensory
8
sensory meridian
8
meridian response
8
response asmr
8
control participants
8
asmr
7
electroencephalographic examination
4
examination autonomous
4
asmr autonomous
4
asmr perceptual
4

Similar Publications

Sensory disabilities have been identified as significant risk factors for dementia but underlying molecular mechanisms are unknown. In different Drosophila models with loss of sensory input, we observe non-autonomous induction of the integrated stress response (ISR) deep in the brain, as indicated by eIF2α phosphorylation-dependent elevated levels of the ISR effectors ATF4 and XRP1. Unlike during canonical ISR, however, the ATF4 and XRP1 transcription factors are enriched in cytosolic granules that are positive for RNA and the stress granule markers Caprin, FMR1, and p62, and are reversible upon restoration of vision for blind flies.

View Article and Find Full Text PDF
Article Synopsis
  • ASMR is a sensory phenomenon that creates tingling sensations through specific auditory or visual triggers, showing promise for reducing anxiety and enhancing relaxation in orthodontics.
  • ASMR has physiological benefits, including lower heart rates and improved mood, and can help manage dental anxiety by providing personalized sensory experiences tailored to individual patient preferences.
  • The use of ASMR during orthodontic procedures could improve patient comfort and compliance, highlighting the potential of this technique as a cost-effective therapeutic tool within dental settings.
View Article and Find Full Text PDF

Comparative analysis of sensory properties and chemical composition in grape spirits: Pervaporation separation vs. distillation.

Food Chem

December 2024

Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China. Electronic address:

To clarify the effects of pervaporation and distillation on aroma profiles, the Sensomics approach investigated the aroma characteristics and key aroma compounds of Cabernet Sauvignon (CS) and Ugni Blanc (UB) grape spirits produced by pervaporation (UB-P, CS-P) and distillation (UB-D, CS-D). The results indicated that pervaporated grape spirits exhibited stronger floral and fruity aromas, while distilled grape spirits were characterized by more pronounced cooked apple and toasty aromas. Consumers preferred products with intense floral and fruity aromas and weaker cooked apple note.

View Article and Find Full Text PDF

Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from six cats.

View Article and Find Full Text PDF

The propulsive fins of ray-finned fish are used for large scale locomotion and fine maneuvering, yet also provide sensory feedback regarding hydrodynamic loading and the surrounding environment. This information is gathered via nerve cells in the webbing between their fin rays. A similar bioinspired system that can gather force feedback from fin motion could enable valuable insight into robotic underwater locomotion improving swimming efficiency and orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!