Calcitriol alleviates ethanol-induced hepatotoxicity via AMPK/mTOR-mediated autophagy.

Arch Biochem Biophys

Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China. Electronic address:

Published: January 2021

Excessive ethanol consumption causes cellular damage, leading to fetal alcohol syndrome and alcohol liver diseases, which are frequently seen with vitamin D (VD) deficiency. A great deal of progress has been achieved in the mechanisms of ethanol-induced hepatocyte damage. However, there are limited intervention means to reduce or rescue hepatocytes damage caused by ethanol. On the basis of our preliminary limited screen process, calcitriol showed a positive effect on protecting hepatocyte viability. Therefore, the molecular basis is worth elucidating. We found that calcitriol pretreatment markedly improved the cell viability, decreased cell apoptosis and oxidative stress and alleviated the abnormal mitochondrial morphology and membrane potential of hepatocytes induced by ethanol. Notably, autophagy was significantly enhanced by calcitriol, as evident by the increasing number of autophagosomes and autolysosomes, upregulated LC3B-Ⅱ and ATG5 levels, and promotion of p62 degradation. Furthermore, calcitriol pretreatment increased the colocalization of GFP-LC3-labeled autophagosomes with mitochondria, suggesting that calcitriol effectively promoted ethanol-induced mitophagy in hepatocytes. In addition, the inhibition of autophagy attenuated the protective and preventive effect of calcitriol. Furthermore, the effect of calcitriol on autophagy was regulated by AMPK/mTOR signaling, and signaling transduction was dependent on the Vitamin D receptor (VDR). In conclusion, calcitriol ameliorates ethanol-induced hepatocyte damage by enhancing autophagy. It may offer a convenient preventive and hepatoprotective mean for people on occasional social drink.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2020.108694DOI Listing

Publication Analysis

Top Keywords

calcitriol
9
ethanol-induced hepatocyte
8
hepatocyte damage
8
calcitriol pretreatment
8
autophagy
5
calcitriol alleviates
4
ethanol-induced
4
alleviates ethanol-induced
4
ethanol-induced hepatotoxicity
4
hepatotoxicity ampk/mtor-mediated
4

Similar Publications

Ligand-Independent Vitamin D Receptor Actions Essential for Keratinocyte Homeostasis in the Skin.

Int J Mol Sci

January 2025

Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan.

Recently, we demonstrated that the alopecia observed in vitamin D receptor gene-deficient (-KO) rats is not seen in rats with a mutant VDR(R270L/H301Q), which lacks ligand-binding ability, suggesting that the ligand-independent action of VDR plays a crucial role in maintaining the hair cycle. Since -KO rats also showed abnormalities in the skin, the relationship between alopecia and skin abnormalities was examined. To clarify the mechanism of actions of vitamin D and VDR in the skin, protein composition, and gene expression patterns in the skin were compared among -KO, -R270L/H301Q, and wild-type (WT) rats.

View Article and Find Full Text PDF

The active metabolite of vitamin D3, calcitriol (1,25D), is widely recognised for its direct anti-proliferative and pro-differentiation effects. However, 1,25D is calcaemic, which restricts its clinical use for cancer treatment. Non-calcaemic agonists of the vitamin D receptor (VDR) could be better candidates for cancer treatment.

View Article and Find Full Text PDF

CD4+ T helper 2 cell-macrophage crosstalk induces IL-24-mediated breast cancer suppression.

JCI Insight

January 2025

Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain.

View Article and Find Full Text PDF

Rickets in children usually present with skeletal manifestations. However, they can also rarely present with extraskeletal manifestations, one of them being respiratory insufficiency. We present an unusual case of a girl in early childhood with respiratory insufficiency, which turned out to be due to the underlying vitamin D-dependent rickets (VDDR).

View Article and Find Full Text PDF

Comparative Analyses of the Safety Profiles of Vitamin D Receptor Agonists: A Pharmacovigilance Study Based on the EudraVigilance Database.

Pharmaceuticals (Basel)

December 2024

Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania.

: Vitamin D receptor (VDR) agonists are commonly used in clinical practice for their roles in calcium regulation and potential benefits in various diseases. However, their safety profiles, particularly for compounds available as food supplements, remain underexplored in real-world settings. This study aimed to analyze the safety profiles of VDR agonists using the EudraVigilance database, focusing on adverse drug reactions (ADRs) reported between 1 January 2004 and 23 June 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!