A novel, sustainable chitosan polymeric nanocomposite (CS-PVA@CuO) was synthesized and subjected to the removal of acid blue 25 (AB25) from the aqueous environment. The influence of different variables such as p, contact time, initial dye concentration, temperature, and adsorption kinetics has been examined in the batch adsorption process. The CS-PVA@CuO composite was systematically characterized by XRD, FTIR, SEM, and EDX analysis. The pseudo-first order (PFO), pseudo-second order (PSO), and intra-particle diffusion kinetics equations were used to examine the kinetic data of the adsorption process. The adsorption kinetics confirms that the PSO model was a more exact fit. Thermodynamics study typically revealed that the uptake of AB25 by the adsorbent is spontaneous and endothermic in nature. Remarkably, the results reveal the highest adsorption capacity of the CS-PVA@CuO was 171.4 mg/g at 313 K. To be specific, CS-PVA@CuO polymer nanocomposite can be effectively used as a suitable adsorbent material for the potential elimination of anionic AB25 dye from the aqueous solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.11.133DOI Listing

Publication Analysis

Top Keywords

chitosan polymeric
8
polymeric nanocomposite
8
removal acid
8
acid blue
8
aqueous environment
8
adsorption kinetics
8
adsorption process
8
adsorption
5
preparation novel
4
novel chitosan
4

Similar Publications

Objectives: Escherichia coli and Salmonella Typhimurium are frequent causes of foodborne illness affecting many people annually. In order to develop natural antimicrobial agents against these microorganisms, thyme oil (TO) was considered as active antibacterial ingredient. TO contains various bioactive compounds that exhibit antimicrobial properties.

View Article and Find Full Text PDF

Biomaterials for Corneal Regeneration.

Adv Sci (Weinh)

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.

View Article and Find Full Text PDF

Renal ischemia-reperfusion (I/R) injury is a common clinical factor for acute kidney injury (AKI). A current study investigated the renoprotective effects of the trinitroglycerine (TNG) combination with chitosan nanoparticles (CNPs) on renal I/R-induced AKI. Rats were randomly assigned to five groups (n = 8/group): Sham, I/R, TNG (50 mg/kg) + I/R, CNPs (60 mg/kg) + I/R, and TNG-CNPs + I/R.

View Article and Find Full Text PDF

In this study, the nano chitosan particles were produced by ionotropic gelation between sodium tripolyphosphate and chitosan. The effect of nano chitosan with or without sodium lactate coating was evaluated on physicochemical (pH, thiobarbituric acid, total volatile basic nitrogen, and peroxide), microbial (total mesophilic and psychrotrophic viable counts, lactic acid bacteria, yeasts, and molds), and sensorial properties of beef burgers within 24 days of storage at 4°C. The solutions of 1% nano chitosan (T), 2% nano chitosan (T), 2.

View Article and Find Full Text PDF

Background: Treatment of peripheral nerve defects is a major concern in regenerative medicine. This study therefore aimed to explore the efficacy of a neural graft constructed using adipose mesenchymal stem cells (ADSC), acellular microtissues (MTs), and chitosan in the treatment of peripheral nerve defects.

Methods: Stem cell therapy with acellular MTs provided a suitable microenvironment for axonal regeneration, and compensated for the lack of repair cells in the neural ducts of male 8-week-old Sprague Dawley rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!