A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Beyond the extremes: Rocks as ultimate refuge for fungi in drylands. | LitMetric

Beyond the extremes: Rocks as ultimate refuge for fungi in drylands.

Mycologia

Department of Ecological and Biological Sciences, University of Tuscia , Largo dell'Università snc, 01100, Viterbo, Italy.

Published: August 2021

AI Article Synopsis

  • Rapid climate change is significantly impacting drylands, where harsh conditions challenge microbial life, especially under drought.
  • Rocks serve as a refuge for microorganisms, offering protection from UV radiation, stability, and some water retention, enabling life to persist in extreme environments.
  • The study focuses on fungal communities, particularly in Antarctic drylands, discussing their diversity, roles, and the need for global rock surveys to understand their ecological importance and contributions to desert management and climate change monitoring.

Article Abstract

In an era of rapid climate change and expansion of desertification, the extremely harsh conditions of drylands are a true challenge for microbial life. Under drought conditions, where most life forms cannot survive, rocks represent the main refuge for life. Indeed, the endolithic habitat provides thermal buffering, physical stability, and protection against incident ultraviolet (UV) radiation and solar radiation and, to some extent, ensures water retention to microorganisms. The study of these highly specialized extreme-tolerant and extremophiles may provide tools for understanding microbial interactions and processes that allow them to keep their metabolic machinery active under conditions of dryness and oligotrophy that are typically incompatible with active life, up to the dry limits for life. Despite lithobiontic communities being studied all over the world, a comprehensive understanding of their ecology, evolution, and adaptation is still nascent. Herein, we survey the fungal component of these microbial ecosystems. We first provide an overview of the main defined groups (i.e., lichen-forming fungi, black fungi, and yeasts) of the most known and studied Antarctic endolithic communities that are almost the only life forms ensuring ecosystem functionality in the ice-free areas of the continent. For each group, we discuss their main traits and their diversity. Then, we focus on the fungal taxonomy and ecology of other worldwide endolithic communities. Finally, we highlight the utmost importance of a global rock survey in order to have a comprehensive view of the diversity, distribution, and functionality of these fungi in drylands, to obtain tools in desert area management, and as early alarm systems to climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00275514.2020.1816761DOI Listing

Publication Analysis

Top Keywords

fungi drylands
8
climate change
8
life forms
8
endolithic communities
8
life
6
extremes rocks
4
rocks ultimate
4
ultimate refuge
4
fungi
4
refuge fungi
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!