Oxyphospholipids in Cardiovascular Calcification.

Arterioscler Thromb Vasc Biol

Department of Surgery, Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center (A.C., V.B.-B., M.-C.B., P.M.), Laval University, Canada.

Published: January 2021

Mineralization of cardiovascular structures including blood vessels and heart valves is a common feature. We postulate that ectopic mineralization is a response-to-injury in which signals delivered to cells trigger a chain of events to restore and repair tissues. Maladaptive response to external or internal signals promote the expression of danger-associated molecular patterns, which, in turn, promote, when expressed chronically, a procalcifying gene program. Growing evidence suggest that danger-associated molecular patterns such as oxyphospholipids and small lipid mediators, generated by enzyme activity, are involved in the transition of vascular smooth muscle cells and valve interstitial cells to an osteoblast-like phenotype. Understanding the regulation and the molecular processes underpinning the mineralization of atherosclerotic plaques and cardiac valves are providing valuable mechanistic insights, which could lead to the development of novel therapies. Herein, we provide a focus account on the role oxyphospholipids and their mediators in the development of mineralization in plaques and calcific aortic valve disease.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.120.313790DOI Listing

Publication Analysis

Top Keywords

danger-associated molecular
8
molecular patterns
8
oxyphospholipids cardiovascular
4
cardiovascular calcification
4
mineralization
4
calcification mineralization
4
mineralization cardiovascular
4
cardiovascular structures
4
structures including
4
including blood
4

Similar Publications

Mechanisms of allorecognition and xenorecognition in transplantation.

Clin Transplant Res

December 2024

The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea.

Foreign antigen recognition is the ability of immune cells to distinguish self from nonself, which is crucial for immune responses in both invertebrates and vertebrates. In vertebrates, T cells play a pivotal role in graft rejection by recognizing alloantigens presented by antigen-presenting cells through direct, indirect, or semidirect pathways. B cells also significantly contribute to the indirect presentation of antigens to T cells.

View Article and Find Full Text PDF

Background: Cold inducible RNA-binding protein (CIRP) is an important danger-associated molecular pattern involved in tissue-specific and systemic inflammation related to inflammation and Alzheimer's disease (AD). However, the precise roles and mechanism of CIRP in the functional changes in astrocytes during the development of AD are still unknown. This study aimed to assess gene expression alterations in astrocytes after they overexpress CIRP (oe-CIRP) and to explore the relationship between abnormal CIRP expression and AD.

View Article and Find Full Text PDF

Soluble CD52 mediates immune suppression by human seminal fluid.

Front Immunol

December 2024

School of Biosciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia.

Seminal fluid provides for the carriage and nutrition of sperm, but also modulates immunity to prevent allo-rejection of sperm by the female. Immune suppression by seminal fluid has been associated with extracellular vesicles, originally termed prostasomes, which contain CD52, a glycosylated glycophosphoinositol-anchored peptide released from testicular epithelial cells. Previously, we reported that human T cell-derived CD52, bound to the danger-associated molecular pattern protein, high mobility group box 1 (HMGB1), suppresses T cell function via the inhibitory sialic acid-binding immunoglobulin-like lectin-10 (Siglec-10) receptor.

View Article and Find Full Text PDF

AI-based classification of anticancer drugs reveals nucleolar condensation as a predictor of immunogenicity.

Mol Cancer

December 2024

Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.

Background: Immunogenic cell death (ICD) inducers are often identified in phenotypic screening campaigns by the release or surface exposure of various danger-associated molecular patterns (DAMPs) from malignant cells. This study aimed to streamline the identification of ICD inducers by leveraging cellular morphological correlates of ICD, specifically the condensation of nucleoli (CON).

Methods: We applied artificial intelligence (AI)-based imaging analyses to Cell Paint-stained cells exposed to drug libraries, identifying CON as a marker for ICD.

View Article and Find Full Text PDF

Immune-checkpoint inhibitors (ICIs) have revolutionized melanoma treatment, yet approximately half of patients do not respond to these therapies. Identifying prognostic biomarkers is crucial for treatment decisions. Our retrospective study assessed liquid biopsies and tumor tissue analyses for two potential biomarkers: danger-associated molecular pattern (DAMP) S100A8/A9 and its source, neutrophils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!