Cardiac and cerebrovascular diseases are currently the leading causes of mortality and disability worldwide. Both the heart and brain display similar vascular anatomy, with large conduit arteries running on the surface of the organ providing tissue perfusion through an intricate network of penetrating small vessels. Both organs rely on fine tuning of local blood flow to match metabolic demand. Blood flow regulation requires adequate functioning of the microcirculation in both organs, with loss of microvascular function, termed small vessel disease (SVD) underlying different potential clinical manifestations. SVD in the heart, known as coronary microvascular dysfunction, can cause chronic or acute myocardial ischemia and may lead to development of heart failure. In the brain, cerebral SVD can cause an acute stroke syndrome known as lacunar stroke or more subtle pathological alterations of the brain parenchyma, which may eventually lead to neurological deficits or cognitive decline in the long term. Coronary microcirculation cannot be visualized in vivo in humans, and functional information can be deduced by measuring the coronary flow reserve. The diagnosis of cerebral SVD is largely based on brain magnetic resonance imaging, with white matter hyperintensities, microbleeds, and brain atrophy reflecting key structural changes. There is evidence that such structural changes reflect underlying cerebral SVD. Here, we review interactions between SVD and cardiovascular risk factors, and we discuss the evidence linking cerebral SVD with large vessel atheroma, atrial fibrillation, heart failure, and heart valve disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCIMAGING.120.010460 | DOI Listing |
Neuroradiology
January 2025
Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, Villarroel 170, 08036, Barcelona, Spain.
Purpose: Fluid exchanges between perivascular spaces (PVS) and interstitium may contribute to the pathophysiology of small vessel disease (SVD). We aimed to analyze water diffusivity measures and their relationship with PVS and other SVD imaging markers.
Methods: We enrolled 50 consecutive patients with a recent small subcortical infarct.
J Clin Neurosci
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China. Electronic address:
Objectives: This study investigated the correlation between retinal vasculature and cerebral small vessel disease (CSVD) imaging markers, providing new evidence for the retina-brain association.
Methods: Two hundred and thirty-nine participants aged 55-85 were enrolled in the study. CSVD indicators, encompassing white matter hyperintensities (WMHs), lacunes (LAs), cerebral microbleeds (CMBs), and enlarged perivascular spaces (EPVSs), were assessed.
Ann Neurol
January 2025
Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.
Objective: After a recent small subcortical infarct (RSSI), some patients develop perilesional or remote hyperintensities ('caps/tracks') to the index infarct on T2/FLAIR MRI. However, their clinical relevance remains unclear. We investigated the clinicoradiological correlates of 'caps/tracks', and their impact on long-term outcomes following RSSI.
View Article and Find Full Text PDFStroke
January 2025
Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom. (Z.S., E.L.H., H.S.M.).
Background: Endothelial dysfunction and inflammation have been implicated in the pathophysiology of cerebral small vessel disease (SVD). However, whether they are causal, and if so which components of the pathways represent potential treatment targets, remains uncertain.
Methods: Two-sample Mendelian randomization (MR) was used to test the association between the circulating abundance of 996 proteins involved in endothelial dysfunction and inflammation and SVD.
J Alzheimers Dis
January 2025
Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Background: Cerebral small vessel disease (SVD) is the leading cause of vascular dementia. However, it is unclear whether the individual SVD or global SVD progression correlates with cognitive decline across mild cognitive impairment (MCI) subjects.
Objective: To investigate the association of small vessel disease progression with longitudinal cognitive decline across MCI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!