Antibiotic-resistant bacteria are a serious threat to human and animal health. Metabolite-enabled eradication of drug-resistant pathogens is an attractive strategy, and metabolite adjuvants, such as fumarate, are used for restoring the bactericidal ability of antibiotics. However, we show that metabolites in the TCA cycle increase the viability of against chloramphenicol (CAP), based on the survival assay of differential metabolites identified by LC-MS/MS. Furthermore, NADPH promotes CAP resistance in the CAP-resistant strain, while oxidants restore the bactericidal ability. Finally, we show that the intracellular redox state determines the sensitivity to CAP, and the total antioxidative capacity is decreased significantly in the antibiotic-resistant strain. Considering that the metabolites promote CAP resistance, metabolite adjuvants should be applied very cautiously. Overall, our research expands on the knowledge that the redox state is related to the bactericidal ability of CAP.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.0c00725DOI Listing

Publication Analysis

Top Keywords

bactericidal ability
12
metabolites tca
8
tca cycle
8
metabolite adjuvants
8
cap resistance
8
redox state
8
cap
5
metabolites
4
cycle promote
4
promote resistance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!