High-valent Pd complexes are potent agents for the oxidative functionalization of inert C-H bonds, and it was previously shown that rapid electrocatalytic methane monofunctionalization could be achieved by electro-oxidation of Pd to a critical dinuclear Pd intermediate in concentrated or fuming sulfuric acid. However, the structure of this highly reactive, unisolable intermediate, as well as the structural basis for its mechanism of electrochemical formation, remained elusive. Herein, we use X-ray absorption and Raman spectroscopies to assemble a structural model of the potent methane-activating intermediate as a Pd dimer with a Pd-Pd bond and a 5-fold O atom coordination by HSO ligands at each Pd center. We further use EPR spectroscopy to identify a mixed-valent M-M bonded Pd species as a key intermediate during the Pd-to-Pd oxidation. Combining EPR and electrochemical data, we quantify the free energy of Pd dimerization as <-4.5 kcal/mol for Pd and <-9.1 kcal/mol for Pd. The structural and thermochemical data suggest that the aggregate effect of metal-metal and axial metal-ligand bond formation drives the critical Pd dimerization reaction in between electrochemical oxidation steps. This work establishes a structural basis for the facile electrochemical oxidation of Pd to a M-M bonded Pd dimer and provides a foundation for understanding its rapid methane functionalization reactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c05894 | DOI Listing |
J Fluoresc
January 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning, Guangxi, 530004, China.
Two dipicolylamine (DPA) derivatives with the pyrene and anthracene groups, 1-(pyren-1-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L1) and 1-(anthracen-9-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L2) were synthesized, characterized, and their affinitive properties for metal ions were studied. The mass spectroscopy and Job's plots showed that L1 and L2 reacted with Cu and formed complexes [Cu(L1)(solvent)] (L1-Cu) and [Cu(L2)(solvent)] (L2-Cu), respectively. Both L1 and L2 were fluorescent probes recognizing Cu via the emission quenching and further detecting HS via the emission revival.
View Article and Find Full Text PDFOrg Lett
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
Herein, we present an unprecedented electrochemical reductive cyclizative carboxylation of -vinylphenyl isocyanides with carbon dioxide achieved without the use of metal catalysts. This protocol demonstrates a broad substrate scope and good functional group tolerance, facilitating the rapid assembly of 2-oxoindolin-3-acetic acids in good to high yields with excellent regioselectivity. Furthermore, these structural motifs may have potential applications in formal synthesis of bioactive natural products.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
The outbreak of the monkeypox epidemic underscores the importance of developing a rapid and sensitive virus detection technique. Microneedles (MNs) offer minimally invasive sampling capabilities, providing a solution for the development of integrated extraction and diagnostic portable devices. Here, we report an integrated MNs and hydrogel biosensor (IMHB) platform, composed of an electronic device, an MN patch, and a hydrogel patch.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.
Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.
View Article and Find Full Text PDFRapid detection of pork quality has garnered increasing attention due to its status as one of the most widely consumed meats in the world. This study developed an electrochemical impedance combined with sensory evaluation method to achieve real-time imaging and quality assessment of pork. The optimal parameters for pork detection were determined through system performance tests and a Design of Experiment, which included the use of an adjacent excitation pattern, an excitation current of 15 mA at 10 kHz, a detector diameter of 5 cm, and stainless-steel electrodes embedded in the pork.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!