Metal-Organic Frameworks (MOFs), thanks to their type V water adsorption isotherms ("S-Shape") and large water capacities, are considered as potential breakthrough adsorbents for heat-pump applications. In particular, Al(OH)-fumarate could enable efficient regeneration at a lower temperature than silica-gel which would allow us to address the conversion of waste heat at low temperature such as found in data centers. Despite its greater adsorption capacity features, heat and mass transport limitations could jeopardize the potential performance of Al(OH)-fumarate. Heat and mass transport depend on the size of the bodies (mm range), their packing and on the pore structures, i.e. macro-mesopore volumes and sizes. This paper describes the cost-efficient and scalable synthesis and shaping processes of Al(OH)-fumarate beads of various sizes appropriate for use in water Adsorption Heat-Pumps (AHPs). The objective was to study transport limitations (i.e. mass and heat) in practical e beads which meet mechanical stability requirements. Dynamic data at the grain scale was obtained by the Large Temperature Jump method while dynamic data at the adsorber scale was obtained on a heat exchanger filled with more than 1 kg of Al(OH)-fumarate beads. Whereas the binder content had little impact on mass and heat transfer in this study, we found that Knudsen diffusion in mesopores of the grain may be the main limiting factor at the grain scale. At the adsorber scale, heat-transfer within the bed packing as well as to the heat exchanger is likely responsible for the slow adsorption and desorption kinetics which have been observed for very low desorption temperature. Finally, the dynamic aspects of the observed water adsorption isotherm shift with temperature are discussed in light of reported reversible structure modification upon temperature triggered water adsorption-desorption.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0fd00009dDOI Listing

Publication Analysis

Top Keywords

heat exchanger
12
water adsorption
12
heat-pump applications
8
heat mass
8
mass transport
8
transport limitations
8
aloh-fumarate beads
8
mass heat
8
dynamic data
8
grain scale
8

Similar Publications

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review.

Water Sci Technol

January 2025

Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University 31527, Egypt; Faculty of Engineering, Pharos University in Alexandria 21648, Alexandria, Egypt.

This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes.

View Article and Find Full Text PDF

Land use and land cover changes (LULCC) alter local surface attributes, thereby modifying energy balance and material exchanges, ultimately impacting meteorological parameters and air quality. The North China Plain (NCP) has undergone rapid urbanization in recent decades, leading to dramatic changes in land use and land cover. This study utilizes the 2020 land use and land cover data obtained from the MODIS satellite to replace the default 2001 data in the Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model.

View Article and Find Full Text PDF

Molecular insights into developmental toxicity induced by PCB77 exposure on zebrafish via integrating transcriptomics with adverse outcome pathway.

Sci Total Environ

January 2025

Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Polychlorinated biphenyls (PCBs), a typical type of persistent organic pollutants (POPs), were previously widely employed as insulating and heat exchange fluids in transformers and capacitors. Despite knowledge of its adverse effects, the precise mechanism underlying PCB77 toxicity remains enigmatic. In this study, we utilized zebrafish as a model organism to explore the toxic effects of various concentrations of PCB77 (10, 200, and 1000 μg/L) and its molecular toxicity mechanisms.

View Article and Find Full Text PDF

A Thermally Robust Biopolymeric Separator Conveys K Transport and Interfacial Chemistry for Longevous Potassium Metal Batteries.

ACS Nano

January 2025

College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China.

Potassium metal batteries (KMBs) hold promise for stationary energy storage with certain cost and resource merits. Nevertheless, their practicability is greatly handicapped by dendrite-related anodes, and the target design of specialized separators to boost anode safety is in its nascent stage. Here, we develop a thermally robust biopolymeric separator customized via a solvent-exchange and amino-siloxane decoration strategy to render durable and safe KMBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!