Influence of the N atom and its position on electron photodetachment of deprotonated indole and azaindole.

Phys Chem Chem Phys

CNRS, Aix Marseille Univ., PIIM, Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397, Marseille, France.

Published: December 2020

Electron photodetachment of cold deprotonated indole and azaindole anions has been studied by use of a mass-selective photofragmentation spectrometer capable of negative ion and neutral particle detection. The electron affinities of the indolyl radical and the 5-, 6- and 7-azaindolyl radicals have been measured with an uncertainty of less than 0.002 eV. The presence of the nitrogen atom in the six-membered ring of the azaindolide anions stabilises the electron by 0.3 to 0.4 eV, i.e. about 10-15%, compared to the indolide anion. No fragmentation was observed in either the anionic or radical forms of the species studied. The appearance of dipole-bound states in the spectra of deprotonated 6- and 7-azaindole anions allowed us to analyse the vibrational structure of the neutral 6- and 7-azaindolyl radicals produced following photodetachment. Although no dipole-bound states were clearly identified for deprotonated indole or 5-azaindole, the shape of the photodetachment threshold suggests the presence of a very weakly dipole-bound state or dipole resonance, which cannot be resolved with our laser resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp03609aDOI Listing

Publication Analysis

Top Keywords

deprotonated indole
12
electron photodetachment
8
indole azaindole
8
7-azaindolyl radicals
8
dipole-bound states
8
influence atom
4
atom position
4
electron
4
position electron
4
photodetachment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!