A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Subpicosecond HI elimination in the 266 nm photodissociation of branched iodoalkanes. | LitMetric

Subpicosecond HI elimination in the 266 nm photodissociation of branched iodoalkanes.

Phys Chem Chem Phys

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.

Published: December 2020

The 266 nm photodissociation dynamics of 1-iodopropane and 2-iodopropane were studied using photofragment translational energy spectroscopy using vacuum ultraviolet (VUV) photoionization and electron impact ionization detection of products. The photochemistry of 1-iodopropane was found to be similar to that of iodomethane and iodoethane, with dominant production of I*(2P1/2), and no evidence (<0.21%) for HI + alkene formation. Significantly different behavior was observed for 2-iodopropane, with dominant production of ground state I(2P3/2), and a HI yield >10.5%. The anisotropy (β) parameters for all channels approached the limiting value of 2.0, indicating that 1,2-HI elimination occurs on subpicosecond timescales, like direct C-I bond fission, following excitation to 3Q0. The HI translational energy and angular distributions were similar to those for I(2P3/2), suggesting that motion of the heavy I atom in HI is largely derived from the repulsive nature of the 1Q1 surface correlating to R + I with the light H atom picked up by ground state I late in the exit channel producing highly vibrationally excited HI.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp06460eDOI Listing

Publication Analysis

Top Keywords

266 photodissociation
8
translational energy
8
subpicosecond elimination
4
elimination 266
4
photodissociation branched
4
branched iodoalkanes
4
iodoalkanes 266
4
photodissociation dynamics
4
dynamics 1-iodopropane
4
1-iodopropane 2-iodopropane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!