Although increasing superwetting membranes have been developed for separating oil-water emulsions based on the "size-sieving" mechanism, their pores are easily blocked and fouled by the intercepted emulsified droplets, which would result in a severe membrane fouling issue and a sharp decline in flux. Instead of droplet interception, a fiber-based coalescer separates oil/water emulsions by inducing the emulsified droplets to coalesce and transform into layered oil/water mixtures, exhibiting an ability to work continuously for a long time with high throughput, which makes it a promising technology for emulsion treatment. However, the underlying mechanism of the separation process is not well understood, which makes it difficult to further improve the separation performance. Hence, in this work, the dynamic behaviors of water-in-oil emulsified droplets on the surface of the coalescing fiber were numerically investigated based on the phase-field model. The attachment, transport, and detachment behaviors of droplets on fibers were directly observed, and the effects of fiber wettability, orientation, arrangement, and fluid speed were studied in detail. First, it was observed that the droplets will move downstream along the fiber surface under the effect of fluid shear, and the large droplets tend to coalesce with their downstream small droplets on the same fiber surface because they move faster compared to the small droplets. Second, it was found that the emulsified droplet will spontaneously transport to the intersection of two angled fibers under the drive of asymmetric Laplace pressure, which demonstrated that the emulsified droplets tend to gather at the intersection of fibers when permeating through a coalescing medium. Third, it was found that the detachment behaviors of droplets from the fiber surface are strongly affected by their size, fiber wettability, and fluid velocity. In addition, the results of our simulation show that the backside of two closely attached fibers can further inhibit the detachment of droplets. We truly believe that our research results are of significance to optimize the parameters of a fiber-based coalescer for separating oil-water emulsions and to develop novel oil/water separators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c02948 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Departamento de Engenharia de Materiais, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil.
The pequi () is a typical fruit from the Brazilian Cerrado. From it, pequi pulp oil is extracted, a valuable product for cosmetic applications due to its high levels of unsaturated fatty acids and carotenoids. Carotenoids are antioxidant compounds that are easily oxidized.
View Article and Find Full Text PDFMolecules
January 2025
Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
Background: Intravenous nanoemulsions (NEs) are gaining attention as potential delivery systems for poorly water-soluble substances like cannabidiol (CBD). This study aimed to develop novel NEs based on CBD-enriched hemp oils and evaluate their physiochemical properties.
Methods: The stability of hemp oils enriched with various concentrations of CBD (0.
Foods
January 2025
School of Food Engineering, Harbin University, Harbin 150086, China.
We carried out limited enzymatic hydrolysis with trypsin on rice bran protein (RBP) pretreated by high hydrostatic pressure (HHP) in this study. The effects of the degree of hydrolysis (DH) on the structural and emulsifying properties were investigated. The results indicated that the molecular structure of RBP changed after limited enzymatic hydrolysis.
View Article and Find Full Text PDFFoods
January 2025
Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
Emulsifiers with antioxidant properties, such as protein/polyphenol complexes, adsorb at the oil-water interface and improve the physical and oxidative stability of emulsions. Here, 2% (/) sodium caseinate and varying concentrations of phloretin (0-10 mM) were used to stabilize oil-in-water emulsions. Control emulsions with protein alone showed poor stability with increased droplet sizes from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!