The l-type amino acid transporter 1 (LAT1, SLC7A5) imports dietary amino acids and amino acid drugs (e. g., l-DOPA) into the brain, and plays a role in cancer metabolism. Though there have been numerous reports of LAT1-targeted amino acid-drug conjugates (prodrugs), identifying the structural determinants to enhance substrate activity has been challenging. In this work, we investigated the position and orientation of a carbonyl group in linking hydrophobic moieties including the anti-inflammatory drug ketoprofen to l-tyrosine and l-phenylalanine. We found that esters of meta-carboxyl l-phenylalanine had better LAT1 transport rates than the corresponding acylated l-tyrosine analogues. However, as the size of the hydrophobic moiety increased, we observed a decrease in LAT1 transport rate with a concomitant increase in potency of inhibition. Our results have important implications for designing amino acid prodrugs that target LAT1 at the blood-brain barrier or on cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933125 | PMC |
http://dx.doi.org/10.1002/cmdc.202000824 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!