Phase distribution of emerging organic contaminants is highly influential in their presence, fate and transport in surface water. Therefore, it is crucial to determine their state, partitioning behaviour and tendencies in water environments. In this study, Bisphenol A was investigated in both colloidal and soluble phases in water. BPA concentrations ranged between 1.13 and 5.52 ng L in the soluble phase and n.d-2.06 ng L in the colloidal phase, respectively. BPA was dominant in the soluble phase, however, the colloidal contribution ranged between 0 and 24% which implied that colloids can play a significant role in controlling BPA's transportation in water. Urban and industrial areas were the main sources of BPA while forest areas displayed lower levels outside the populated domains. pH levels were between 6.3 and 7.4 which might have affected BPA's solubility in water to some extent. The particle size distribution showed that the majority of the particles in river samples were smaller than 1.8 µm in diameter with a small presence of nanoparticles. Zeta potential varied between - 25 and - 18 mV, and these negative values suggested instability of particles. Furthermore, BPA was positively correlated with BOD, COD and NH-N which might indicate that these organic compounds were released concurrently with BPA. RQ assessment showed low levels of risk towards algae and fish in the study area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683680 | PMC |
http://dx.doi.org/10.1038/s41598-020-77454-8 | DOI Listing |
Front Microbiol
December 2024
Department of Medical Microbiology and Immunology, Medical School, University of Pecs, Pecs, Hungary.
Introduction: The COVID-19 pandemic has become a global health crisis, eliciting varying severity in infected individuals. This study aimed to explore the immune profiles between moderate and severe COVID-19 patients experiencing a cytokine storm and their association with mortality. This study highlights the role of PD-1/PD-L1 and the TIGIT/CD226/CD155/CD112 pathways in COVID-19 patients.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and Engineering, National Yang-Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
Silver chalcogenides exhibit exceptional transport properties but face structural instability at high temperatures, limiting their practical applications. Using AgTe as a model, it is confirm that silver whisker growth above the phase transition renders AgTe unsuitable for thermoelectric applications. Here, the whisker growth mechanism is investigated and propose an inhibition strategy, overcoming a major obstacle in using silver chalcogenides.
View Article and Find Full Text PDFInt J Health Sci (Qassim)
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia.
Objective: Dasatinib (DTB) is a second-generation tyrosine kinase inhibitor that was found it could help with lung cancer treatment. However, DTB has low aqueous solubility and poor bioavailability due to its incomplete absorption and high first-pass effect. The objective of this study was to improve DTB's solubility, delivery, and efficacy as a potential lung cancer treatment by developing an inhalable DTB-nanoemulsion (DNE) formulation.
View Article and Find Full Text PDFChem Sci
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University Corvallis OR 97331 USA
The reaction between molybdenum(ii) acetate and 5-aminoisophthalic acid (HIso-NH) afforded [MoO(μ-O)(Iso-NH)], a novel molybdenum(v) metal-organic polyhedron (MOP) with a triangular antiprismatic shape stabilized by intramolecular N-H⋯O hydrogen bonds. The synthesis conditions, particularly the choice of solvent and reaction time, led to the precipitation of the Mo(v)-MOP in five distinct crystalline forms. These forms vary in their packing arrangements, co-crystallized solvent molecules, and counter-cations, with three phases containing dimethylammonium (dma) and the other two containing diethylammonium (dea).
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway.
The use of in vitro markers able to reproduce the in vivo permeability and diffusivity of orally administered drugs, could represent an innovative starting point for the formulation of delivery systems, in particular for low soluble and low permeable drugs belonging to BCS class II and IV. Considering the great interest in the green pharmaceutical approaches and the increasing use of natural molecules as novel therapeutic drugs, in this study, rutin, hesperidin and curcumin have been selected as lipophilic model drugs to investigate their possible enhancement of their permeability and bioavailability after oral administration. As the low solubility of the three drugs hinders their application, β-cyclodextrins (CD), amphiphilic natural moieties able to form stable inclusion complexes, have been considered to promote their solubilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!