Mercury (Hg), a global contaminant, is emitted mainly in its elemental form Hg to the atmosphere where it is oxidized to reactive Hg compounds, which efficiently deposit to surface ecosystems. Therefore, the chemical cycling between the elemental and oxidized Hg forms in the atmosphere determines the scale and geographical pattern of global Hg deposition. Recent advances in the photochemistry of gas-phase oxidized Hg and Hg species postulate their photodissociation back to Hg as a crucial step in the atmospheric Hg redox cycle. However, the significance of these photodissociation mechanisms on atmospheric Hg chemistry, lifetime, and surface deposition remains uncertain. Here we implement a comprehensive and quantitative mechanism of the photochemical and thermal atmospheric reactions between Hg, Hg, and Hg species in a global model and evaluate the results against atmospheric Hg observations. We find that the photochemistry of Hg and Hg leads to insufficient Hg oxidation globally. The combined efficient photoreduction of Hg and Hg to Hg competes with thermal oxidation of Hg, resulting in a large model overestimation of 99% of measured Hg and underestimation of 51% of oxidized Hg and ∼66% of Hg wet deposition. This in turn leads to a significant increase in the calculated global atmospheric Hg lifetime of 20 mo, which is unrealistically longer than the 3-6-mo range based on observed atmospheric Hg variability. These results show that the Hg and Hg photoreduction processes largely offset the efficiency of bromine-initiated Hg oxidation and reveal missing Hg oxidation processes in the troposphere.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733835PMC
http://dx.doi.org/10.1073/pnas.1922486117DOI Listing

Publication Analysis

Top Keywords

atmospheric
6
oxidation
5
photochemistry oxidized
4
oxidized hgi
4
hgi hgii
4
hgii species
4
species suggests
4
suggests missing
4
missing mercury
4
mercury oxidation
4

Similar Publications

The present work describes the process of the creation and analysis of the first dataset containing processing parameters and functional properties of soft magnetic composites (SMC). All data were obtained experimentally using Fe-3% MgO system. When creating samples, parameters such as a size of MgO nanoparticles, pressing pressure, sintering temperature, time and atmosphere were varied.

View Article and Find Full Text PDF

Rapid growth in bio-logging-the use of animal-borne electronic tags to document the movements, behaviour, physiology and environments of wildlife-offers opportunities to mitigate biodiversity threats and expand digital natural history archives. Here we present a vision to achieve such benefits by accounting for the heterogeneity inherent to bio-logging data and the concerns of those who collect and use them. First, we can enable data integration through standard vocabularies, transfer protocols and aggregation protocols, and drive their wide adoption.

View Article and Find Full Text PDF

Vessel strikes are a critical threat to endangered North Atlantic right whales (Eubalaena glacialis), significantly contributing to their elevated mortality. Accurate estimates of these mortality rates are essential for developing effective management strategies to aid in the species' recovery. This study enhances existing vessel strike models by incorporating detailed regional data on vessel traffic characteristics as well as whale distribution and behavior.

View Article and Find Full Text PDF

The maximum power delivered by a photovoltaic system is greatly influenced by atmospheric conditions such as irradiation and temperature and by surrounding objects like trees, raindrops, tall buildings, animal droppings, and clouds. The partial shading caused by these surrounding objects and the rapidly changing atmospheric parameters make maximum power point tracking (MPPT) challenging. This paper proposes a hybrid MPPT algorithm that combines the benefits of the salp swarm algorithm (SSA) and hill climbing (HC) techniques.

View Article and Find Full Text PDF

Amino acids, as the fundamental constituents of proteins and enzymes, play a vital role in various biological processes. Amino acids such as histidine, cysteine, and methionine are known to coordinate with metal ions in proteins and enzymes, playing critical roles in their structure and function. In metalloproteins, metal ions are often coordinated by specific amino acid residues, contributing to the protein's stability and catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!