Metamaterials assemble multiple subwavelength elements to create structures with extraordinary physical properties (1-4). Optical metamaterials are rare in nature and no natural acoustic metamaterials are known. Here, we reveal that the intricate scale layer on moth wings forms a metamaterial ultrasound absorber (peak absorption = 72% of sound intensity at 78 kHz) that is 111 times thinner than the longest absorbed wavelength. Individual scales act as resonant (5) unit cells that are linked via a shared wing membrane to form this metamaterial, and collectively they generate hard-to-attain broadband deep-subwavelength absorption. Their collective absorption exceeds the sum of their individual contributions. This sound absorber provides moth wings with acoustic camouflage (6) against echolocating bats. It combines broadband absorption of all frequencies used by bats with light and ultrathin structures that meet aerodynamic constraints on wing weight and thickness. The morphological implementation seen in this evolved acoustic metamaterial reveals enticing ways to design high-performance noise mitigation devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733855 | PMC |
http://dx.doi.org/10.1073/pnas.2014531117 | DOI Listing |
Biol Lett
January 2025
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
This study employs an integrated approach, combining three-dimensional flow visualization and two-dimensional flow measurement to investigate the underlying unsteady aerodynamic mechanisms of hovering hawkmoths. Using a single vortex ring model, three aerodynamic force components, such as aerodynamic force induced by unsteady circulation, vortex loop size variation and added mass, are estimated within a dimensionless time (normalized by one wing beat cycle) range of 0.418 < < 0.
View Article and Find Full Text PDFZoological Lett
December 2024
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001. Bairro Bangu, Santo André, SP, 09210-580, Brazil.
Among the insects with wings clad in scales, the butterflies are the best known and those showing greatest variety of scale types. In the Diptera, some families or particular genera of two large groups are known to bear scales on wings, i.e.
View Article and Find Full Text PDFZootaxa
November 2024
Russian Entomological Society; Nzhny Novgorod Branch; P.O. Box 97; Nizhny Novgorod 603009; Russia.
A new species, Pediasia gorbunovi sp. nov., is described from Kyrgyzstan, Baidulu Mountains, at Dolon Pass (41°52'40"N, 75°42'11"E, 2790 m altitude).
View Article and Find Full Text PDFScience
December 2024
Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
In Lepidoptera (butterflies and moths), the genomic region around the gene is a "hotspot" locus, repeatedly implicated in generating intraspecific melanic wing color polymorphisms across 100 million years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. We show that none of the four candidate protein-coding genes within this locus, including , serve as major effectors.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Guangxi key laboratory of Agric-Environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!