Perovskite solar cells have developed into a promising branch of renewable energy. A combination of feasible manufacturing and renewable modules can offer an attractive advancement to this field. Herein, a screen-printed three-layered all-nanoparticle network was developed as a rigid framework for a perovskite active layer. This matrix enables perovskite to percolate and form a complementary photoactive network. Two porous conductive oxide layers, separated by a porous insulator, serve as a chemically stable substrate for the cells. Cells prepared using this scaffold structure demonstrated a power conversion efficiency of 11.08% with a high open-circuit voltage of 0.988 V. Being fully oxidized, the scaffold demonstrated a striking thermal and chemical stability, allowing for the removal of the perovskite while keeping the substrate intact. The application of a new perovskite in lieu of a degraded one exhibited a full regeneration of all photovoltaic performances. Exclusive recycling of the photoactive materials from solar cells paves a path for more sustainable green energy production in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733784 | PMC |
http://dx.doi.org/10.1073/pnas.2013242117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!