Shorter, more potent regimens are needed for tuberculosis. The nitroimidazole pretomanid was recently approved for extensively drug-resistant tuberculosis in combination with bedaquiline and linezolid. Pretomanid may also have benefit as a treatment-shortening agent for drug-sensitive tuberculosis. It is unclear how and whether it can be used together with rifamycins, which are key sterilizing first-line drugs. In this analysis, data were pooled from two studies: the Assessing Pretomanid for Tuberculosis (APT) trial, in which patients with drug-sensitive pulmonary TB received pretomanid, isoniazid, and pyrazinamide plus either rifampin or rifabutin versus standard of care under fed conditions, and the AIDS Clinical Trials Group 5306 (A5306) trial, a phase I study in healthy volunteers receiving pretomanid alone or in combination with rifampin under fasting conditions. In our population pharmacokinetic (PK) model, participants taking rifampin had 44.4 and 59.3% reductions in pretomanid AUC (area under the concentration-time curve) compared to those taking rifabutin or pretomanid alone (due to 80 or 146% faster clearance) in the APT and A5306 trials, respectively. Median maximum concentrations () in the rifampin and rifabutin arms were 2.14 and 3.35 mg/liter, while median AUC values were 30.1 and 59.5 mg·h/liter, respectively. Though pretomanid exposure in APT was significantly reduced with rifampin, AUC values were similar to those associated with effective treatment in registrational trials, likely because APT participants were fed with dosing, enhancing pretomanid relative bioavailability and exposures. Pretomanid concentrations with rifabutin were high but in range with prior observations. While pretomanid exposures with rifampin are unlikely to impair efficacy, our data suggest that pretomanid should be taken with food if prescribed with rifampin. (This study has been registered at ClinicalTrials.gov under identifier NCT02256696.).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849006PMC
http://dx.doi.org/10.1128/AAC.01196-20DOI Listing

Publication Analysis

Top Keywords

pretomanid
13
trial patients
8
rifampin rifabutin
8
auc values
8
rifampin
7
tuberculosis
5
pretomanid pharmacokinetics
4
pharmacokinetics presence
4
presence rifamycins
4
rifamycins interim
4

Similar Publications

Safety, bactericidal activity, and pharmacokinetics of the antituberculosis drug candidate BTZ-043 in South Africa (PanACEA-BTZ-043-02): an open-label, dose-expansion, randomised, controlled, phase 1b/2a trial.

Lancet Microbe

December 2024

Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Germany; German Center for Infection Research, Munich Partner Site, Munich, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection, and Pandemic Research, Munich, Germany; Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. Electronic address:

Background: The broad use of bedaquiline and pretomanid as the mainstay of new regimens to combat tuberculosis is a risk due to increasing bedaquiline resistance. We aimed to assess the safety, bactericidal activity, and pharmacokinetics of BTZ-043, a first-in-class DprE1 inhibitor with strong bactericidal activity in murine models.

Methods: This open-label, dose-expansion, randomised, controlled, phase 1b/2a trial was conducted in two specialised tuberculosis sites in Cape Town, South Africa.

View Article and Find Full Text PDF

Anti-Mycobacterial Activity of Bacterial Topoisomerase Inhibitors with Dioxygenated Linkers.

ACS Infect Dis

January 2025

Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States.

Developing new classes of drugs that are active against infections caused by is a priority for treating and managing this deadly disease. Here, we describe screening a small library of 20 DNA gyrase inhibitors and identifying new lead compounds. Three structurally diverse analogues were identified with minimal inhibitory concentrations of 0.

View Article and Find Full Text PDF

Introduction: Most drug-resistant tuberculosis (DR-TB) occurs due to transmission of unsuspected or ineffectively treated DR-TB. The duration of treatment to stop person-to-person spread of DR-TB is uncertain. We evaluated the impact of novel regimens, including BPaL, on DR-TB transmission using the human-to-guinea pig (H-GP) transmission model.

View Article and Find Full Text PDF

Functions of nitroreductases in mycobacterial physiology and drug susceptibility.

J Bacteriol

January 2025

Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA.

Tuberculosis is a respiratory infection that is caused by members of the complex, with (Mtb) being the predominant cause of the disease in humans. The approval of pretomanid and delamanid, two nitroimidazole-based compounds, for the treatment of tuberculosis encourages the development of more nitro-containing drugs that target Mtb. Similar to the nitroimidazoles, many antimycobacterial nitro-containing scaffolds are prodrugs that require reductive activation into metabolites that inhibit the growth of the pathogen.

View Article and Find Full Text PDF

Recent advancements in the quest of benzazoles as anti-Mycobacterium tuberculosis agents.

Bioorg Chem

December 2024

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India; School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India. Electronic address:

Tuberculosis (TB) remains a global health challenge, claiming numerous lives each year, despite recent advancements in drug discovery and treatment strategies. Current TB treatment typically involves long-duration chemotherapy regimens that are often accompanied by adverse effects. The introduction of new anti-TB drugs, such as Bedaquiline, Delamanid, and Pretomanid, offers hope for more effective treatment, although challenges persist keeping the quest to find new anti-TB chemotypes an incessant exercise of medicinal chemists.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!